Skip to main content
U.S. flag

An official website of the United States government

Effects of elemental composition on the incorporation of dietary nitrogen and carbon isotopic signatures in an omnivorous songbird

Informally Refereed

Abstract

The use of stable isotopes to infer diet requires quantifying the relationship between diet and tissues and, in particular, knowing of how quickly isotopes turnover in different tissues and how isotopic concentrations of different food components change (discriminate) when incorporated into consumer tissues. We used feeding trials with wild-caught yellow-rumped warblers (Dendroica cororzatn) to determine g15N and g13C turnover rates for blood, g15N and '" diet-tissue discrimination factors, and diet-tissue relationships for blood and feathers. After 3 weeks on a common diet, 36 warblers were assigned to one of four diets differing in the relative proportion of fruit and insects. Plasma half-life estimates ranged from 0.4 to 0.7 days for 6I3c and from 0.5 to 1.7 days for S"N . Half-life did not differ among diets. Whole blood half-life for 6'" ranged from 3.9 to relative to diet for birds on diets with high percentages of insects. For all tissues, carbon and nitrogen isotope discrimination factors increased with carbon and nitrogen concentrations of diets. The isotopic signature of plasma increased linearly with the sum of the isotopic signature of the diet and the discrimination factor. Because the isotopic signature of tissues depends on both elemental concentration and isotopic signature of the diet, attempts to reconstruct diet from stable isotope signatures require use of nixing models that incorporate elemental concentration.

Keywords

Dendroica coronata, diet reconstruction, diet-tissue relationship, Discrimination, Stable isotope turnover

Citation

Pearson, Scott F.; Levey, Douglas J.; Greenberg, Cathryn H.; Martinez del Rio, Carlos. 2003. Effects of elemental composition on the incorporation of dietary nitrogen and carbon isotopic signatures in an omnivorous songbird. Oecologia 135: 516-523
Citations
https://www.fs.usda.gov/research/treesearch/20291