Simulating the dynamics of linear forests in great plains agroecosystems under changing climates

  • Authors: Guo, Qinfeng; Brandle, J.; Schoeneberger, Michele; Buettner, D.
  • Publication Year: 2004
  • Publication Series: Miscellaneous Publication
  • Source: Can. J. for. Res. 34: 2564-2572

Abstract

Most forest growth models are not suitable for the highly fragmented, linear (or linearly shaped) forests in the Great Plains agroecosystems (e.g., windbreaks, riparian forest buffers), where such forests are a minor but ecologically important component of the land mosaics. This study used SEEI)SCAPE, a recently modified gap model designed for cultivated land mosaics in the Creat Plains, to simulate the effects of climate change on the dynamics of such linear forests. We simulated the dynamics of windbreaks with different initial planting species richness and widths flight changes as the selected resulting factor) using cuirent climate data and nested regional circulation models (RegCMs). Results indicated that ( i ) it took 70-80 simuhtion years for the linear forests to reach a steady state under both normal (present-day) and warming climates; (ii) warming climates would reduce total aboveground tree biomass and the spatial variation in biomass, but increase dominance in the linear forests, especially in the upland forests; (iii) linear forests with higher planting pecies richness and smaller width produced higher aboveground tree biomass per unit area; and (iv) the same species performed very differently with different climate scenarios, initial planting diversity, and forest widths. Although the model still needs further improvements ('e.g., the effects of understory species should be included, the model can serve as a useful tool in modeling the succession of linear forests in human-dominated land mosaics under changing climates and may also have significant practical implications in other systems.

  • Citation: Guo, Qinfeng; Brandle, J.; Schoeneberger, Michele; Buettner, D. 2004. Simulating the dynamics of linear forests in great plains agroecosystems under changing climates. Can. J. for. Res. 34: 2564-2572
  • Posted Date: April 1, 1980
  • Modified Date: August 22, 2006
  • Print Publications Are No Longer Available

    In an ongoing effort to be fiscally responsible, the Southern Research Station (SRS) will no longer produce and distribute hard copies of our publications. Many SRS publications are available at cost via the Government Printing Office (GPO). Electronic versions of publications may be downloaded, printed, and distributed.

    Publication Notes

    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
    • Our online publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact the SRS webmaster if you notice any errors which make this publication unusable.
    • To view this article, download the latest version of Adobe Acrobat Reader.