Land Breeze and Thermals: A Scale Threshold to Distinguish Their Effects

  • Authors: Liu, Yongqiang
  • Publication Year: 2005
  • Publication Series: Miscellaneous Publication
  • Source: Advance in Atmospheric Sciences 22(6): 889-902

Abstract

Land breeze is a type of mesoscale circulation developed due to thermal forcing over a heterogeneous landscape. It can contribute to atmospheric dynamic and hydrologic processes through affecting heat and water fluxes on the land-atmosphere interface and generating shallow convective precipitation. If the scale of the landscape heterogeneity is smaller than a certain size, however, the resulting land breeze becomes weak and becomes mixed up with other thermal convections like thermals. This study seeks to identify a scale threshold to distinguish the effects between land breeze and thermals. Two-dimensional simulations were performed with the Regional Atmospheric Modeling System (RAMS) to simulate thermals and land breeze. Their horizontal scale features were analyzed using the wavelet transform. The thermals developed over a homogeneous landscape under dry or wet conditions have an initial scale of 2-5 km during their early stage of development. The scale jumps to 10-2015 km when condensation occurs. The solution of an analytical model indicates that the reduced degree of atmospheric instability clue to the release of condensation potential heat could be one of the contributing factors for the increase in scale. The land breeze, on the other hand, has a major scale identical to the size of the landscape heterogeneity throughout various stages of development. The results suggest that the effects of land breeze can be clearly distinguished from those of thermals only if the size of the landscape heterogeneity is larger than the scale threshold of about 5 km for dry atmospheric processes or about 15 km for moist ones.

  • Citation: Liu, Yongqiang 2005. Land Breeze and Thermals: A Scale Threshold to Distinguish Their Effects. Advance in Atmospheric Sciences 22(6): 889-902
  • Keywords: land breeze, thermals, horizontal scale, large-eddy simulation, wavelet transform
  • Posted Date: March 13, 2006
  • Modified Date: August 22, 2006
  • Print Publications Are No Longer Available

    In an ongoing effort to be fiscally responsible, the Southern Research Station (SRS) will no longer produce and distribute hard copies of our publications. Many SRS publications are available at cost via the Government Printing Office (GPO). Electronic versions of publications may be downloaded, printed, and distributed.

    Publication Notes

    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
    • Our online publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact the SRS webmaster if you notice any errors which make this publication unusable.
    • To view this article, download the latest version of Adobe Acrobat Reader.