Stand restoration burning in oak-pine forests in the southern Applachians: effects on aboveground biomass and carbon and nitrogen cycling


Understory prescribed burning is being suggested as a viable management tool for restoring degraded oak–pine forest communities in the southern Appalachians yet information is lacking on how this will affect ecosystem processes. Our objectives in this study were to evaluate the watershed scale effects of understory burning on total aboveground biomass, and the carbon and nitrogen pools in coarse woody debris (CWD), forest floor and soils. We also evaluated the effects of burning on three key biogeochemical fluxes; litterfall, soil CO2 flux and soil net nitrogen mineralization. We found burning significantly reduced understory biomass as well as the carbon and nitrogen pools in CWD, small wood and litter. There was no significant loss of carbon and nitrogen from the fermentation, humus and soil layer probably as the result of low fire intensity. Burning resulted in a total net loss of 55 kg ha-1 nitrogen from the wood and litter layers, which should be easily replaced by future atmospheric deposition. We found a small reduction in soil CO2 flux immediately following the burn but litterfall and net nitrogen mineralization were not significantly different from controls throughout the growing season following the burn. Overall, the effects of burning on the ecosystem processes we measured were small, suggesting that prescribed burning may be an effective management tool for restoring oak–pine ecosystems in the southern Appalachians.

  • Citation: Hubbard, Robert M.; Vose, James M.; Clinton, Barton D.; Elliott, Katherine J.; Knoepp, Jennifer D. 2004. Stand restoration burning in oak-pine forests in the southern Applachians: effects on aboveground biomass and carbon and nitrogen cycling. Forest Ecology and Management 190, p. 311-321
  • Posted Date: April 5, 2006
  • Modified Date: August 22, 2006
  • Print Publications Are No Longer Available

    In an ongoing effort to be fiscally responsible, the Southern Research Station (SRS) will no longer produce and distribute hard copies of our publications. Many SRS publications are available at cost via the Government Printing Office (GPO). Electronic versions of publications may be downloaded, printed, and distributed.

    Publication Notes

    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
    • Our online publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact the SRS webmaster if you notice any errors which make this publication unusable.
    • To view this article, download the latest version of Adobe Acrobat Reader.