Evenness indices measure the signal strength of biweight site chronologies

  • Authors: Riitters, Kurt H.
  • Publication Year: 1990
  • Publication Series: Miscellaneous Publication
  • Source: Tree-Ring Bulletin, Vol. 50: 21-27

Abstract

The signal strength of a biweight site chronology is properly viewed as an outcome of analysis rather than as a property of the forest-climate system. It can be estimated by the evenness of the empirical weights that are assigned to individual trees. The approach is demonstrated for a 45-year biweight chronology obtained from 40 jack pine (Pinus banksiana Lamb.) trees. The annual evenness of the empirical weights is calculated by indices derived from the Shannon and Simpson diversity indices, and the variances are found by the jackknife procedure. The annual estimates are then averaged to find an overall estimate of biweight signal strength for the 45-year period. These techniques are most useful for determining sample sizes for the biweight procedure, and for comparing different methods of detrending and standardizing data sets prior to applying the biweight mean-value function.

  • Citation: Riitters, Kurt H. 1990. Evenness indices measure the signal strength of biweight site chronologies. Tree-Ring Bulletin, Vol. 50: 21-27
  • Posted Date: August 13, 2007
  • Modified Date: August 15, 2007
  • Requesting Print Publications

    Publication requests are subject to availability. Fiscal responsibility limits the hardcopies of publications we produce and distribute. Electronic versions of publications may be downloaded, distributed and printed.

    Please make any requests at pubrequest@fs.fed.us.

    Publication Notes

    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
    • Our online publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact the SRS webmaster if you notice any errors which make this publication unusable.
    • To view this article, download the latest version of Adobe Acrobat Reader.