Predicting Diameter Distributions of Longleaf Pine Plantations: A Comparison Between Artificial Neural Networks and Other Accepted Methodologies

  • Authors: Leduc, Daniel J.; Matney, Thomas G.; Belli, Keith L.; Baldwin, V. Clark
  • Publication Year: 2001
  • Publication Series: Research Paper (RP)
  • Source: Res. Pap. SRS-25.Asheville, NC: U.S. Department of Agriculture, Forest Service, Southern Research Station. 24p.

Abstract

Artificial neural networks (NN) are becoming a popular estimation tool. Because they require no assumptions about the form of a fitting function, they can free the modeler from reliance on parametric approximating functions that may or may not satisfactorily fit the observed data. To date there have been few applications in forestry science, but as better NN software and fitting algorithms become available, they may be used to solve a wide variety of problems-particularly problems where the underlying relationship between predicted and predictors is unknown. We benchmark tested an aitemative to the traditional Weibull probability distribution function, diameter-at-breast-height moment, and direct parameter prediction models for approximating stand-diameter distributions. Using a feedforward backpropagation network, we demonstrated that NN are a somewhat better option. Unlike Weibull approximations, NN solutions cannot easily be mathematically constrained to match known reality constraints, but this difficulty is easy to overcome in practice.

  • Citation: Leduc, Daniel J.; Matney, Thomas G.; Belli, Keith L.; Baldwin, V. Clark, Jr. 2001. Predicting Diameter Distributions of Longleaf Pine Plantations: A Comparison Between Artificial Neural Networks and Other Accepted Methodologies. Res. Pap. SRS-25.Asheville, NC: U.S. Department of Agriculture, Forest Service, Southern Research Station. 24p.
  • Keywords: Connectionist models, parallel distributed processing systems, parameter recovery, Weibull distribution
  • Posted Date: April 1, 1980
  • Modified Date: August 22, 2006
  • Print Publications Are No Longer Available

    In an ongoing effort to be fiscally responsible, the Southern Research Station (SRS) will no longer produce and distribute hard copies of our publications. Many SRS publications are available at cost via the Government Printing Office (GPO). Electronic versions of publications may be downloaded, printed, and distributed.

    Publication Notes

    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
    • Our online publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact the SRS webmaster if you notice any errors which make this publication unusable.
    • To view this article, download the latest version of Adobe Acrobat Reader.