Temporal dynamics and spatial variability in the enhancement of canopy leaf area under elevated atmospheric CO2

  • Authors: McCarthy, Heather R.; Oren, Ram; Finzi, Adrien C.; Ellsworth, David S.; Kim, Hyun-Seok; Johnsen, Kurt H.; Millar, Bonnie
  • Publication Year: 2007
  • Publication Series: Miscellaneous Publication
  • Source: Global Change Biology, Vol. 13: 2479-2497

Abstract

Increased canopy leaf area (L) may lead to higher forest productivity and alter processes such as species dynamics and ecosystem mass and energy fluxes. Few CO2enrichment studies have been conducted in closed canopy forests and none have shown a sustained enhancement of L. We reconstructed 8 years (1996–2003) of L at Duke’s Free Air CO2 Enrichment experiment to determine the effects of elevated atmospheric CO2 concentration ([CO2]) on L before and after canopy closure in a pine forest with a hardwood component, focusing on interactions with temporal variation in water availability and spatial variation in nitrogen (N) supply. The dynamics of L were reconstructed using data on leaf litterfall mass and specific leaf area for hardwoods, and needle litterfall mass and specific leaf area combined with needle elongation rates, and fascicle and shoot counts for pines. The dynamics of pine L production and senescencewere unaffected by elevated [CO2], although L senescence for hardwoods was slowed. Elevated [CO2] enhanced pine L and the total canopy L (combined pine and hardwood species; Po0.050); on average, enhancement following canopy closure was 16% and 14% respectively. However, variation n pine L and its response to elevated [CO2] was not random. Each year pine L under ambient and elevated [CO2was spatially correlated to the variability in site nitrogen availability (e.g. r2=0.94 and 0.87 in 2001, when L was highest before declining due to droughts and storms), with the [CO2]-induced enhancement increasing with N (P50.061). Incorporating data on N beyond the range of native fertility, achieved through N fertilization, indicated that pine L had reached the site maximum under elevated [CO2] where native N was highest. Thus closed canopy pine forests may be able to increase leaf area under elevated [CO2] in moderate fertility sites, but are unable to respond to [CO2] in both infertile sites (insufficient resources) and sites having high levels of fertility (maximum utilization of resources). The total canopy L, representing the combined L of pine and hardwood species, was constant across the N gradient under both ambient and elevated [CO2], generating a constant enhancement of canopy L. Thus, in mixed species stands, L of canopy hardwoods which developed on lower fertility sites (3gNinputsm-2 yr-1) may be sufficiently enhanced under elevated [CO2] to compensate for the lack of response in pine L, and generate an appreciable response of total canopy L (~14%).

  • Citation: McCarthy, Heather R.; Oren, Ram; Finzi, Adrien C.; Ellsworth, David S.; Kim, Hyun-Seok; Johnsen, Kurt H.; Millar, Bonnie 2007. Temporal dynamics and spatial variability in the enhancement of canopy leaf area under elevated atmospheric CO2. Global Change Biology, Vol. 13: 2479-2497
  • Keywords: broadleaf leaf area, drought, leaf area index, leaf area profile, Liquidambar styraciflua, nitrogen availability, Pinus taeda
  • Posted Date: December 19, 2007
  • Modified Date: December 20, 2007
  • Print Publications Are No Longer Available

    In an ongoing effort to be fiscally responsible, the Southern Research Station (SRS) will no longer produce and distribute hard copies of our publications. Many SRS publications are available at cost via the Government Printing Office (GPO). Electronic versions of publications may be downloaded, printed, and distributed.

    Publication Notes

    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
    • Our online publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact the SRS webmaster if you notice any errors which make this publication unusable.
    • To view this article, download the latest version of Adobe Acrobat Reader.