Estimating forest ecosystem evapotranspiration at multiple temporal scales with a dimension analysis approach

  • Authors: Zhou, Guoyi; Sun, Ge; Wang, Xu; Zhou, Chuanyan; McNulty, Steven G.; Vose, James M.; Amatya, Devendra M.
  • Publication Year: 2008
  • Publication Series: Miscellaneous Publication
  • Source: Journal of the American Water Resource Association, Vol. 44(1): 208-221

Abstract

It is critical that evapotranspiration (ET) be quantified accurately so that scientists can evaluate the effects of land management and global change on water availability, streamflow, nutrient and sediment loading, and ecosystem productivity in watersheds. The objective of this study was to derive a new semi-empirical ET modeled using a dimension analysis method that could be used to estimate forest ET effectively at multiple temporal scales. The model developed describes ET as a function of water availability for evaporation and transpiration, potential ET demand, air humidity, and land surface characteristics. The model was tested with longterm hydrometeorological data from five research sites with distinct forest hydrology in the United States and China. Averaged simulation error for daily ET was within 0.5 mm⁄ day. The annual ET at each of the five study sites were within 7% of measured values. Results suggest that the model can accurately capture the temporal dynamics of ET in forest ecosystems at daily, monthly, and annual scales. The model is climate-driven and is sensitive to topography and vegetation characteristics and thus has potential to be used to examine the compounding hydrologic responses to land cover and climate changes at multiple temporal scales.

  • Citation: Zhou, Guoyi; Sun, Ge; Wang, Xu; Zhou, Chuanyan; McNulty, Steven G.; Vose, James M.; Amatya, Devendra M. 2008. Estimating forest ecosystem evapotranspiration at multiple temporal scales with a dimension analysis approach. Journal of the American Water Resource Association, Vol. 44(1): 208-221
  • Keywords: dimension analysis, evapotranspiration, empirical modeling, forest hydrology, water balance
  • Posted Date: February 8, 2008
  • Modified Date: February 12, 2008
  • Requesting Print Publications

    Publication requests are subject to availability. Fiscal responsibility limits the hardcopies of publications we produce and distribute. Electronic versions of publications may be downloaded, distributed and printed.

    Please make any requests at pubrequest@fs.fed.us.

    Publication Notes

    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
    • Our online publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact the SRS webmaster if you notice any errors which make this publication unusable.
    • To view this article, download the latest version of Adobe Acrobat Reader.