Using forest inventory plot data and satellite imagery from MODIS and Landsat-TM to model spatial distribution patterns of honeysuckle and privet

  • Authors: Salajanu, Dumitru; Jacobs, Dennis M.
  • Publication Year: 2009
  • Publication Series: Proceedings (P)
  • Source: In: Proceedings of ASPRS 2009 annual conference—reflection of the past, vision for the future. 2009 March 9-13; Baltimore, MD. Bethesda, MD: American Society for Photogrammetry and Remote Sensing.

Abstract

Forest inventory and analysis data monitor the presence and extent of certain non-native invasive species. On
forestland, non-native species are considered part of the understory vegetation and can be found near canopy
openings as well as and the forest edge. The objective of this study is to incorporate the presence of select nonnative
species into forest classification modeling procedures and determine the accuracy for producing non-native
species spatial distribution classifications. A secondary objective is to compare classification accuracies of the
different spatial resolution data (Landsat-TM and MODIS), which suggests that an increase in resolution provides an
increase in overall accuracy. The classification results provide forest distribution combined with non-native species
occurrence for honeysuckle (Lonicera spp.) and privet (Ligustrum spp.). Subsets of the plot data are used in a
decision tree modeling process (See5) applied to the satellite data (Landsat-TM, MODIS), and ancillary data to
classify the land cover and model privet/honeysuckle spatial distribution. Classification results show that overall
classification accuracy for the percent of pixels correctly classified (%PCC) increased from 67.5% to 72.5% (privet)
and from 67.5% to 70.0% (honeysuckle) when privet and honeysuckle are coded as present in the plot.
Comparisons between overall classification accuracy show a 5.0% increase for privet, and 2.5% for honeysuckle. A
comparison between MODIS and Landsat-TM classifications shows a 3.7% increase in accuracy when both privet
and honeysuckle are coded in several categories based on their percent of participation on the plot. Classifications
from Landsat-TM and MODIS models show a higher confusion in the privet/honeysuckle categories (percent privet
or honeysuckle on plot), however the Landsat-TM model performed slightly better.

  • Citation: Salajanu, Dumitru; Jacobs, Dennis M. 2009. Using forest inventory plot data and satellite imagery from MODIS and Landsat-TM to model spatial distribution patterns of honeysuckle and privet. In: Proceedings of ASPRS 2009 annual conference—reflection of the past, vision for the future. 2009 March 9-13; Baltimore, MD. Bethesda, MD: American Society for Photogrammetry and Remote Sensing.
  • Keywords: FIA, honeysuckle, Landsat-TM, MODIS, privet,satellite imagery, spatial distribution
  • Posted Date: September 30, 2009
  • Modified Date: October 22, 2009
  • Print Publications Are No Longer Available

    In an ongoing effort to be fiscally responsible, the Southern Research Station (SRS) will no longer produce and distribute hard copies of our publications. Many SRS publications are available at cost via the Government Printing Office (GPO). Electronic versions of publications may be downloaded, printed, and distributed.

    Publication Notes

    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
    • Our online publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact the SRS webmaster if you notice any errors which make this publication unusable.
    • To view this article, download the latest version of Adobe Acrobat Reader.