Skip to main content
U.S. flag

An official website of the United States government

Quantifying carbon sequestration in forest plantations by modeling the dynamics of above and below ground carbon pools

Informally Refereed

Abstract

Intensive pine plantation management may provide opportunities to increase carbon sequestration in the Southeastern United States. Developing management options that increase fiber production and soil carbon sequestration require an understanding of the biological and edaphic processes that control soil carbon turnover. Belowground carbon resides primarily in three pools: roots, necromass (litter, roots), and soil. There is little evidence that intensive management affects mineral soil carbon. Conversely, perennial root systems contribute to carbon sequestration through formation of long-lived belowground biomass and carbon in root necromass and woody debris that may persist for years following harvest. Due to their large mass and physicochemical composition, these dead coarse roots require decades to decompose. If the length of the decay process extends beyond the length of the next harvest rotation, it will result in an accumulation of soil carbon. Increasing productivity and shortening rotation length may accelerate carbon sequestration over successive rotations. Further, management activities that retain forest floor and slash material or incorporate organic materials into the soil during site preparation may also increase soil carbon.

Parent Publication

Citation

Maier, Chris A.; Johnsen, Kurt H. 2010. Quantifying carbon sequestration in forest plantations by modeling the dynamics of above and below ground carbon pools. In: Stanturf, John A., ed. 2010. Proceedings of the 14th biennial southern silvicultural research conference. Gen. Tech. Rep. SRS–121. Asheville, NC: U.S. Department of Agriculture, Forest Service, Southern Research Station. 3-8.
https://www.fs.usda.gov/research/treesearch/35345