Effects of above- and below-ground competition from shrubs on photosynthesis, transpiration and growth in Quercus robur L

  • Authors: Jensen, Anna M.; Lof, Magnus; Gardiner, Emile S.
  • Publication Year: 2011
  • Publication Series: Scientific Journal (JRNL)
  • Source: Environmental and Experimental Botany 71:367-375


For a tree seedling to successfully establish in dense shrubbery, it must maintain function under heterogeneous resource availability. We evaluated leaf-level acclimation in photosynthetic capacity, seedling-level transpiration, and seedling morphology and growth to gain an understanding of the effects of above- and below-ground competition on Quercus robur seedlings. Experimental seedlings were established in a typical southern Swedish shrub community where they received 1 of 4 competition levels (above-ground, below-ground, above- and below-ground, or no competition), and leaf-level responses were examined between two growth flushes. Two years after establishment, first-flush leaves from seedlings receiving above-ground competition showed a maximum rate of photosynthesis (Amax) 40% lower than those of control seedlings. With the development of a second flush above the shrub canopy, Amax of these seedlings increased to levels equivalent to those of seedlings free of light competition. Shrubby competition reduced oak seedling transpiration such that seedlings exposed to aboveand below-ground competition showed rates 43% lower than seedlings that were not exposed to competition. The impaired physiological function of oak seedlings growing amid competition ultimately led to a 60–74% reduction in leaf area, 29–36% reduction in basal diameter, and a 38–78% reduction in total biomass accumulation, but root to shoot ratio was not affected. Our findings also indicate that above ground competition reduced Amax, transpiration and biomass accumulation more so than below-ground competition. Nevertheless, oak seedlings exhibited the ability to develop subsequent growth flushes with leaves that had an Amax acclimated to utilize increased light availability. Our findings highlight the importance of flush-level acclimation under conditions of heterogeneous resource availability, and the capacity of oak seedlings to initiate a positive response to moderate competition in a shrub community.

  • Citation: Jensen, Anna M.; Lof, Magnus; Gardiner, Emile S. 2011. Effects of above- and below-ground competition from shrubs on photosynthesis, transpiration and growth in Quercus robur L. seedlings. Environmental and Experimental Botany 71:367-375.
  • Keywords: Pedunculate oak, Neighboring effect, Vertical light gradient, Light acclimation, hotosynthetic capacity
  • Posted Date: June 23, 2011
  • Modified Date: July 26, 2011
  • Print Publications Are No Longer Available

    In an ongoing effort to be fiscally responsible, the Southern Research Station (SRS) will no longer produce and distribute hard copies of our publications. Many SRS publications are available at cost via the Government Printing Office (GPO). Electronic versions of publications may be downloaded, printed, and distributed.

    Publication Notes

    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
    • Our online publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact the SRS webmaster if you notice any errors which make this publication unusable.
    • To view this article, download the latest version of Adobe Acrobat Reader.