Trends over time in tree and seedling phylogenetic diversity indicate regional differences in forest biodiversity change

  • Authors: Potter, Kevin M.; Woodall, Christopher W.
  • Publication Year: 2012
  • Publication Series: Scientific Journal (JRNL)
  • Source: Ecological Applications 22(2):517–531

Abstract

Changing climate conditions may impact the short-term ability of forest tree species to regenerate in many locations. In the longer term, tree species may be unable to persist in some locations while they become established in new places. Over both time frames, forest tree biodiversity may change in unexpected ways. Using repeated inventory measurements five years apart from more than 7000 forested plots in the eastern United States, we tested three hypotheses: phylogenetic diversity is substantially different from species richness as a measure of biodiversity; forest communities have undergone recent changes in phylogenetic diversity that differ by size class, region, and seed dispersal strategy; and these patterns are consistent with expected early effects of climate change. Specifically, the magnitude of diversity change across broad regions should be greater among seedlings than in trees, should be associated with latitude and elevation, and should be greater among species with high dispersal capacity. Our analyses demonstrated that phylogenetic diversity and species richness are decoupled at small and medium scales and are imperfectly associated at large scales. This suggests that it is appropriate to apply indicators of biodiversity change based on phylogenetic diversity, which account for evolutionary relationships among species and may better represent community functional diversity. Our results also detected broadscale patterns of forest biodiversity change that are consistent with expected early effects of climate change. First, the statistically significant increase over time in seedling diversity in the South suggests that conditions there have become more favorable for the reproduction and dispersal of a wider variety of species, whereas the significant decrease in northern seedling diversity indicates that northern conditions have become less favorable. Second, we found weak correlations between seedling diversity change and latitude in both zones, with stronger relationships apparent in some ecoregions. Finally, we detected broadscale seedling diversity increases among species with longer-distance dispersal capacity, even in the northern zone, where overall seedling diversity declined. The statistical power and geographic extent of such analyses will increase as data become available over larger areas and as plot measurements are repeated at regular intervals over a longer period of time.

  • Citation: Potter, Kevin M.; Woodall, Christopher W. 2012. Trends over time in tree and seedling phylogenetic diversity indicate regional differences in forest biodiversity change. Ecological Applications 22(2):517–531.
  • Keywords: biodiversity, climate change, conservation biology, dispersal, ecosystem function, forest health, indicator, landscape ecology, monitoring, North America, phylogenetic diversity, regional scale
  • Posted Date: April 11, 2012
  • Modified Date: April 11, 2012
  • Print Publications Are No Longer Available

    In an ongoing effort to be fiscally responsible, the Southern Research Station (SRS) will no longer produce and distribute hard copies of our publications. Many SRS publications are available at cost via the Government Printing Office (GPO). Electronic versions of publications may be downloaded, printed, and distributed.

    Publication Notes

    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
    • Our online publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact the SRS webmaster if you notice any errors which make this publication unusable.
    • To view this article, download the latest version of Adobe Acrobat Reader.