Modeling loblolly pine aboveground live biomass in a mature pine-hardwood stand: a cautionary tale

  • Authors: Bragg, D. C.
  • Publication Year: 2011
  • Publication Series: Scientific Journal (JRNL)
  • Source: Journal of the Arkansas Academy of Science 65:31-38

Abstract

Carbon sequestration in forests is a growing area of interest for researchers and land managers. Calculating the quantity of carbon stored in forest biomass seems to be a straightforward task, but it is highly dependent on the function(s) used to construct the stand. For instance, there are a number of possible equations to predict aboveground live biomass for loblolly pine (Pinus taeda) growing in southeastern Arkansas. Depending on stem diameter at breast height (DBH), biomass varied considerably between four different prediction systems for loblolly pine. According to the tested models, individual tree oven-dry biomass for a 50 cm DBH loblolly pine ranged between 1,085 kg and 1,491 kg. Beyond this point, departures between these models became increasingly pronounced, with one even projecting an irrational decline to negative biomass for trees >138.7 cm DBH, while the others varied between 12,447 and 15,204 kg. Although some deviation is not surprising given the inherent differences in model form and three of the models were extrapolations across much of this diameter range, the difference between the extremes was unexpected. Such disparities significantly impact stand-level (cumulative) predictions of biomass in forests dominated by large-diameter individuals, as demonstrated for an existing stand (Hyatt’s Woods) in Drew County, Arkansas. Differences between these models caused loblolly pine aboveground live-tree biomass estimations in Hyatt’s Woods to vary by almost 34,000 kg/ha.

  • Citation: Bragg, D. C. 2011. Modeling loblolly pine aboveground live biomass in a mature pine-hardwood stand: a cautionary tale. Journal of the Arkansas Academy of Science 65:31-38.
  • Keywords: loblolly pine, Pinus taeda, Arkansas, biomass, pine-hardwood, carbon sequestration
  • Posted Date: April 26, 2012
  • Modified Date: January 14, 2013
  • Requesting Print Publications

    Publication requests are subject to availability. Fiscal responsibility limits the hardcopies of publications we produce and distribute. Electronic versions of publications may be downloaded, distributed and printed.

    Please make any requests at pubrequest@fs.fed.us.

    Publication Notes

    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
    • Our online publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact the SRS webmaster if you notice any errors which make this publication unusable.
    • To view this article, download the latest version of Adobe Acrobat Reader.