Modeling percent tree canopy cover: a pilot study

  • Authors: Coulston, John W.; Moisen, Gretchen G.; Wilson, Barry T.; Finco, Mark V.; Cohen, Warren B.; Brewer, C. Kenneth
  • Publication Year: 2012
  • Publication Series: Scientific Journal (JRNL)
  • Source: Photogrammetric Engineering & Remote Sensing 78(7): 715–727

Abstract

Tree canopy cover is a fundamental component of the landscape, and the amount of cover influences fire behavior, air pollution mitigation, and carbon storage. As such, efforts to empirically model percent tree canopy cover across the United States are a critical area of research. The 2001 national-scale canopy cover modeling and mapping effort was completed in 2006, and here we present results from a pilot study for a 2011 product. We examined the influence of two different modeling techniques (random forests and beta regression), two different Landsat imagery normalization processes, and eight different sampling intensities across five different pilot areas. We found that random forest out-performed beta regression techniques and that there was little difference between models developed based on the two different normalization techniques. Based on these results we present a prototype study design which will test canopy cover modeling approaches across a broader spatial scale.

  • Citation: Coulston, John W.; Moisen, Gretchen G.; Wilson, Barry T.; Finco, Mark V.; Cohen, Warren B.; Brewer, C. Kenneth. 2012. Modeling percent tree canopy cover: a pilot study. Photogrammetric Engineering & Remote Sensing 78(7): 715–727.
  • Keywords: landsat, remote sensing, tree cover
  • Posted Date: June 19, 2012
  • Modified Date: January 3, 2013
  • Print Publications Are No Longer Available

    In an ongoing effort to be fiscally responsible, the Southern Research Station (SRS) will no longer produce and distribute hard copies of our publications. Many SRS publications are available at cost via the Government Printing Office (GPO). Electronic versions of publications may be downloaded, printed, and distributed.

    Publication Notes

    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
    • To view this article, download the latest version of Adobe Acrobat Reader.