Forecasting intentional wildfires using temporal and spatiotemporal autocorrelations

Abstract

We report daily time series models containing both temporal and spatiotemporal lags, which are applied to forecasting intentional wildfires in Galicia, Spain. Models are estimated independently for each of the 19 forest districts in Galicia using a 1999–2003 training dataset and evaluated out-of-sample with a 2004–06 dataset. Poisson autoregressive models of order P – PAR(P) models – significantly out-perform competing alternative models over both in-sample and out-of-sample datasets, reducing out-of-sample root-mean-squared errors by an average of 15%. PAR(P) and static Poisson models included covariates deriving from crime theory, including the temporal and spatiotemporal autoregressive time series components. Estimates indicate highly significant autoregressive components, lasting up to 3 days, and spatiotemporal autoregression, lasting up to 2 days. Models also applied to predict the effect of increased arrest rates for illegal intentional firesetting indicate that the direct long-run effect of an additional firesetting arrest, summed across forest districts in Galicia, is –139.6 intentional wildfires, equivalent to a long-run elasticity of –0.94.

  • Citation: Prestemon, Jeffrey P.; Chas-Amil, María L.; Touza, Julia M.; Goodrick, Scott L. 2012. Forecasting intentional wildfires using temporal and spatiotemporal autocorrelations. International Journal of Wildland Fire 21:743–754.
  • Keywords: arrest, arson, autoregressive, green crime, Galicia, incendiary, Poisson, Spain, time series
  • Posted Date: October 2, 2012
  • Modified Date: October 29, 2013
  • Requesting Print Publications

    Publication requests are subject to availability. Fiscal responsibility limits the hardcopies of publications we produce and distribute. Electronic versions of publications may be downloaded, distributed and printed.

    Please make any requests at pubrequest@fs.fed.us.

    Publication Notes

    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
    • Our online publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact the SRS webmaster if you notice any errors which make this publication unusable.
    • To view this article, download the latest version of Adobe Acrobat Reader.