Identification and visualization of dominant patterns and anomalies in remotely sensed vegetation phenology using a parallel tool for principal components analysis

  • Authors: Mills, Richard Tran; Kumar, Jitendra; Hoffman, Forrest M.; Hargrove, William W.; Spruce, Joseph P.; Norman, Steven P.
  • Publication Year: 2013
  • Publication Series: Scientific Journal (JRNL)
  • Source: Procedia Computer Science 18:2396–2405

Abstract

We investigated the use of principal components analysis (PCA) to visualize dominant patterns and identify anomalies in a multi-year land surface phenology data set (231 m × 231 m normalized difference vegetation index (NDVI) values derived from the Moderate Resolution Imaging Spectroradiometer (MODIS)) used for detecting threats to forest health in the conterminous United States (CONUS). Our goal is to find ways that PCA can be used with this massive data set to automate the process of detecting forest disturbance and attributing it to particular agents. We briefly describe the parallel computational approaches we used to make PCA feasible, and present some examples in which we have used it to visualize the seasonal vegetation phenology for the CONUS and to detect areas where anomalous NDVI traces suggest potential threats to forest health.

  • Citation: Mills, Richard Tran; Kumar, Jitendra; Hoffman, Forrest M.; Hargrove, William W.; Spruce, Joseph P.; Norman, Steven P. 2013. Identification and visualization of dominant patterns and anomalies in remotely sensed vegetation phenology using a parallel tool for principal components analysis. Procedia Computer Science 18:2396–2405.
  • Keywords: phenology, MODIS, NDVI, remote sensing, principal components analysis, singular value decomposition, data mining, anomaly detection, high performance computing, parallel computing
  • Posted Date: September 9, 2013
  • Modified Date: October 28, 2013
  • Requesting Print Publications

    Publication requests are subject to availability. Fiscal responsibility limits the hardcopies of publications we produce and distribute. Electronic versions of publications may be downloaded, distributed and printed.

    Please make any requests at pubrequest@fs.fed.us.

    Publication Notes

    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
    • Our online publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact the SRS webmaster if you notice any errors which make this publication unusable.
    • To view this article, download the latest version of Adobe Acrobat Reader.