Ecosystem carbon stocks in Pinus palustris forests


Longleaf pine (Pinus palustris Mill.) restoration in the southeastern United States offers opportunities for carbon (C) sequestration. Ecosystem C stocks are not well understood in longleaf pine forests, which are typically of low density and maintained by prescribed fire. The objectives of this research were to develop allometric equations for above- and below-ground biomass and quantify ecosystem C stocks in five longleaf pine forests ranging in age from 5 to 87 years and in basal area from 0.4 to 22.6 m2 ha-1. Live aboveground C (woody plant + ground cover) and live root C (longleaf pine below stump + plot level coarse roots + plot level fine roots) ranged from 1.4 and 2.9 Mg C ha-1, respectively, in the 5-year-old stand to 78.4 and 19.2 Mg C ha-1, respectively, in the 87-year-old stand. Total ecosystem C (live plant + dead organic matter + mineral soil) values were 71.6, 110.1, 124.6, 141.4, and 185.4 Mg C ha-1 in the 5-, 12-, 21-, 64-, and 87-year-old stands, respectively, and dominated by tree C and soil C. In the 5-year-old stand, ground cover C and residual taproot C were significant C stocks. This unique, in-depth assessment of above and below-ground C across a series of longleaf pine stands will improve estimates of C in longleaf pine ecosystems and contribute to development of general biomass models that account for variation in climate, site, and management history in an important but understudied ecosystem.

  • Citation: Samuelson, Lisa J.; Stokes, Tom A.; Butnor, John R.; Johnsen, Kurt H.; Gonzalez-Benecke, Carlos A.; Anderson, Pete; Jackson, Jason; Ferrari, Lorenzo; Martin, Tim A.; Cropper, Wendell P. 2014. Ecosystem carbon stocks in Pinus palustris forests. Canadian Journal of Forest Research 44: 476-486.
  • Keywords: longleaf pine, carbon sequestration, allometry, roots, ground penetrating radar
  • Posted Date: April 22, 2014
  • Modified Date: April 25, 2014
  • Print Publications Are No Longer Available

    In an ongoing effort to be fiscally responsible, the Southern Research Station (SRS) will no longer produce and distribute hard copies of our publications. Many SRS publications are available at cost via the Government Printing Office (GPO). Electronic versions of publications may be downloaded, printed, and distributed.

    Publication Notes

    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
    • Our online publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact the SRS webmaster if you notice any errors which make this publication unusable.
    • To view this article, download the latest version of Adobe Acrobat Reader.