Nuclear genetic variation across the range of ponderosa pine (Pinus ponderosa): Phylogeographic, taxonomic and conservation implications

  • Authors: Potter, Kevin M.; Hipkins, Valerie D.; Mahalovich, Mary F.; Means, Robert E.
  • Publication Year: 2015
  • Publication Series: Scientific Journal (JRNL)
  • Source: Tree Genetics & Genomes (2015) 11:38
  • DOI: 10.1007/s11295-015-0865-y

Abstract

Ponderosa pine (Pinus ponderosa) is among the most broadly distributed conifer species of western North America, where it possesses considerable ecological, esthetic, and commercial value. It exhibits complicated patterns of morphological and genetic variation, suggesting that it may be in the process of differentiating into distinct regional lineages. A robust analysis of genetic variation across the ponderosa pine complex is necessary to ensure the effectiveness of management and conservation efforts given the species’ large distribution, the existence of many isolated disjunct populations, and the potential susceptibility of some populations to climate change and other threats. We used highly polymorphic nuclear microsatellite markers and isozyme markers from 3113 trees in 104 populations to assess genetic variation and structure across the geographic range of patterns of genetic diversity consistent with the hypothesis that ponderosa existed in small, as-yet-undetected Pleistocene glacial refugia north of southern Arizona and New Mexico. The substructuring of genetic variation within the species complex was consistent with its division into two varieties, with genetic clusters within varieties generally associated wit latitudinal zones. The analyses indicate widespread gene flow and/or recent common ancestry among genetic clusters within varieties, but not between varieties. Isolated disjunct populations had lower genetic variation by some measures and greater genetic differentiation than main-range populations. These results should be useful for decision-making and conservation planning related to this widespread and important species.

  • Citation: Potter, Kevin M.; Hipkins, Valerie D.; Mahalovich, Mary F.; Means, Robert E. 2015. Nuclear genetic variation across the range of ponderosa pine (Pinus ponderosa): Phylogeographic, taxonomic and conservation implications. Tree Genetics & Genomes (2015) 11:38. 23 p.
  • Keywords: Biogeography . Gene conservation . Inbreeding . Isozymes . Microevolution . Microsatellites
  • Posted Date: May 12, 2015
  • Modified Date: May 12, 2015
  • Print Publications Are No Longer Available

    In an ongoing effort to be fiscally responsible, the Southern Research Station (SRS) will no longer produce and distribute hard copies of our publications. Many SRS publications are available at cost via the Government Printing Office (GPO). Electronic versions of publications may be downloaded, printed, and distributed.

    Publication Notes

    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
    • Our online publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact the SRS webmaster if you notice any errors which make this publication unusable.
    • To view this article, download the latest version of Adobe Acrobat Reader.