Leaf Litter Decomposition and Nutrient Dynamics in Four Southern Forested Floodplain Communities

  • Authors: Baker, Terrell T. III; Lockaby, B. Graeme; Conner, William H.; Meier, Calvin E.; Stanturf, John A.
  • Publication Year: 2001
  • Publication Series: Scientific Journal (JRNL)
  • Source: Soil Science Society of America Journal Volume 65, no. 4, July-August 2001

Abstract

Decomposition of site-specific litter mixtures was monitored for 100 wk in four Roodplaht communities: (i) a mixed oak community along the Cache River in central Arkansas, (ii) a sweetgum (Liquidambar styraciflua L.)-cherrybark oak (Quercus falcata var. pagodaefolia Ell.) community along Iatt Creek in central Louisiana, (iii) a sweetgum-swamp tupelo [Nyssa sylvatica var. biflora (Walt.) Sarg.] community, and (iv) a laurel oak (Quercus laurifolia Michx.) community along the Coosawhatchie River in southeastern South Carolina. Soil temperature, hydroperiod, and litter quality (C:N, C:P, N:P, lignin:N) were used to interpret differences in the rates of mass loss and nutrient dynamics. After 100 wk, litter mixtures retained 33, 18, 8, and 5% of original mass on the Cache, Coosawhatchie (laurel oak community), Coosawhatchie (sweetgum-swamp tupelo community), and Iatt floodplains, respectively, and these differences appeared related to hydroperiod. Decay rates were comparable to rates reported in similar floodplain environments. Net mineralization of both N and P was observed after 100 wk, but both elements accumulated in litter mixtures periodically. Differences in hydroperiod were observed among the four floodplain communities and decomposition of and nutrient mineralization from litter among them appeared to be inversely related to the number and duration of flood events. Litterbags containing leaf litter of a single-species (i.e., cherrybark oak) were also monitored on three of the four sites to compare decay rates and nutrient dynamics with the litter mixtures. On the Cache River floodplain, slower decay of poorer quality cherrybark oak litter suggested that titter quality drove decomposition under similar edaphic conditions.

  • Citation: Baker, Terrell T., III; Lockaby, B. Graeme; Conner, William H.; Meier, Calvin E.; Stanturf, John A.; Burke, Marianne K. 2001. Leaf Litter Decomposition and Nutrient Dynamics in Four Southern Forested Floodplain Communities. Soil Science Society of America Journal Volume 65, no. 4, July-August 2001
  • Posted Date: January 1, 2000
  • Modified Date: August 22, 2006
  • Print Publications Are No Longer Available

    In an ongoing effort to be fiscally responsible, the Southern Research Station (SRS) will no longer produce and distribute hard copies of our publications. Many SRS publications are available at cost via the Government Printing Office (GPO). Electronic versions of publications may be downloaded, printed, and distributed.

    Publication Notes

    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
    • Our online publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact the SRS webmaster if you notice any errors which make this publication unusable.
    • To view this article, download the latest version of Adobe Acrobat Reader.