Macro-scale assessment of demographic and environmental variation within genetically derived evolutionary lineages of eastern hemlock (Tsuga canadensis), an imperiled conifer of the eastern United States

Listen to a brief audio clip by Kevin Potter describing this publication. • Text Transcript

Abstract

Eastern hemlock (Tsuga canadensis) occupies a large swath of eastern North America and has historically undergone range expansion and contraction resulting in several genetically separate lineages. This conifer is currently experiencing mortality across most of its range following infestation of a non-native insect. With the goal of better understanding the current and future conservation potential of the species, we evaluate ecological differences among populations within these genetically defined clusters, which were previously inferred using nuclear microsatellite molecular markers from 58 eastern hemlock populations. We sub-divide these clusters into four genetic zones to differentiate putative north-central, north-east and southeast (SE) and southwest evolutionary lineages in eastern hemlock. We use demographic data (relative abundance, mortality, and seedling regeneration) from the Forest Inventory Analysis program in conjunction with environmental data to model how these lineages respond to current and future climatic gradients. Ecologically meaningful relationships are explored in the intraspecific context of hemlock abundance distribution and then related to genetic variation. We also assess hemlock's colonization likelihood via a long distance dispersal model and explore its future genetic and ecological conservation potential by combining the future suitable habitats with colonization likelihoods. Results show that future habitats under climate change will markedly decline for eastern hemlock. The remaining areas with higher habitat quality and colonization potential are confined to the SE, the genetic zone nearest the species’ putative glacial refugia, pointing to the need to focus our conservation efforts on this ecologically and genetically important region.

Sound Research audio clip of this publication is available.

  • Citation: Prasad, Anantha M.; Potter, Kevin M. 2017. Macro-scale assessment of demographic and environmental variation within genetically derived evolutionary lineages of eastern hemlock (Tsuga canadensis), an imperiled conifer of the eastern United States. Biodiversity and Conservation. 26: 2223-2249. https://doi.org/10.1007/s10531-017-1354-4.
  • Keywords: Genetic variation, Environmental variation, Intraspecific variation, Genetic zones, Evolutionary lineages, Climate change
  • Posted Date: April 27, 2017
  • Modified Date: July 6, 2021
  • Print Publications Are No Longer Available

    In an ongoing effort to be fiscally responsible, the Southern Research Station (SRS) will no longer produce and distribute hard copies of our publications. Many SRS publications are available at cost via the Government Printing Office (GPO). Electronic versions of publications may be downloaded, printed, and distributed.

    Publication Notes

    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
    • Our online publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact the SRS webmaster if you notice any errors which make this publication unusable.
    • To view this article, download the latest version of Adobe Acrobat Reader.