Early root development of poplars ( Populus spp.) in relation to moist and saturated soil conditions

Abstract

Poplars (Populus spp.) are among the fastest growing trees raised in temperate regions of the world. Testing of newly developed cultivars informs assessment of potential planting stock for local environments. Initial rooting by nine poplar clones was tested in moist and saturated soil conditions during an 18-day greenhouse experiment. Clones responded differently to soil moisture, particularly in number of roots, root distribution, and root dry mass accumulation. About 73% of cuttings planted in moist soil produced roots from callus tissue, whereas only 1% of cuttings planted in saturated soil developed such roots. This drove root distribution towards the basal section of cuttings in moist soil, while in saturated soil roots were more evenly distributed among all three below-ground sections of cuttings. Roots originating from the basal section of cuttings planted in moist soil were longer than roots originating from apical and middle sections. Conversely, roots from the apical and middle sections of cuttings planted in saturated soil were longer than those originating from the basal section. Initial rooting among poplar clones established under two soil moisture regimes has implications for genotype deployment in the field, but long-term effects in the field are still unknown.

  • Citation: Mc Carthy, Rebecka; Löf, Magnus; Gardiner, Emile S. 2017. Early root development of poplars ( Populus spp.) in relation to moist and saturated soil conditions . Scandinavian Journal of Forest Research. 7: 1-8. 9 p.  https://doi.org/10.1080/02827581.2017.1338751.
  • Keywords: flooding; genotype; greenhouse experiment; regeneration; unrooted cutting
  • Posted Date: July 18, 2017
  • Modified Date: August 2, 2017
  • Requesting Print Publications

    Publication requests are subject to availability. Fiscal responsibility limits the hardcopies of publications we produce and distribute. Electronic versions of publications may be downloaded, distributed and printed.

    Please make any requests at pubrequest@fs.fed.us.

    Publication Notes

    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
    • Our online publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact the SRS webmaster if you notice any errors which make this publication unusable.
    • To view this article, download the latest version of Adobe Acrobat Reader.