Modeling Actual Evapotranspiration From Forested Watersheds Across the Southeastern United States

  • Authors: Lu, Jianbiao; Sun, Ge; McNulty, Steven G.; Amatya, Devendra M.
  • Publication Year: 2003
  • Publication Series: Miscellaneous Publication
  • Source: Journal of the American Water Resources Association, 39(4):887-896

Abstract

About 50 to 80 percent of precipitation in the southeastern United States returns to the atmosphere by evapotranspiration. As evapotranspiration is a major component in the forest water balances, accurately quantifying it is critical to predicting the effects of forest management and global change on water, sediment, and nutrient yield from forested watersheds. However, direct measurement of forest evapotranspiration on a large basin or a regional scale is not possible. The objectives of this study were to develop an empirical model to estimate long-term annual actual evapotranspiration (AET) for forested watersheds and to quantify spatial AET patterns across the southeast. A geographic information system (GIS) database including land cover, daily streamflow, and climate was developed using long term experimental and monitoring data from 39 forested watersheds across the region. Using the stepwise selection method implemented in a statistical modeling package, a long term annual AET model was constructed. The final multivariate linear model includes four independent variables - annual precipitation, watershed latitude, watershed elevation, and percentage of forest coverage. The model has an adjusted R2 of 0.794 and is sufficient to predict long term annual AET for forested watersheds across the southeastern United States. The model developed by this study may be used to examine the spatial variability of water availability, estimate annual water loss from mesoscale watersheds, and project potential water yield change due to forest cover change.

  • Citation: Lu, Jianbiao; Sun, Ge; McNulty, Steven G.; Amatya, Devendra M. 2003. Modeling Actual Evapotranspiration From Forested Watersheds Across the Southeastern United States. Journal of the American Water Resources Association, 39(4):887-896
  • Keywords: regional evapotranspiration, land use change, forest hydrology, modeling, regression
  • Posted Date: April 1, 1980
  • Modified Date: August 22, 2006
  • Print Publications Are No Longer Available

    In an ongoing effort to be fiscally responsible, the Southern Research Station (SRS) will no longer produce and distribute hard copies of our publications. Many SRS publications are available at cost via the Government Printing Office (GPO). Electronic versions of publications may be downloaded, printed, and distributed.

    Publication Notes

    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
    • Our online publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact the SRS webmaster if you notice any errors which make this publication unusable.
    • To view this article, download the latest version of Adobe Acrobat Reader.