Herbaceous-layer diversity and tree seedling recruitment are enhanced following Rhododendron maximum shrub removal


Forest ecosystems dominated by Tsuga canadensis are undergoing fundamental changes in function and composition from infestations by hemlock woolly adelgid (Adelges tsugae). We proposed that the first step to restoring southern Appalachian riparian forests following T. canadensis mortality would be eliminating the evergreen shrub, Rhododendron maximum. We hypothesized that removing R. maximum would increase light transmittance, soil moisture and temperature; and subsequently, enhance herbaceous-layer diversity and promote tree seedling recruitment and survival. We tested these hypotheses at two locations, (CWT, Coweeta Hydrologic Laboratory; WOC, White Oak Creek) in the Nantahala Mountain Range of western North Carolina, both with heavy T. canadensis mortality and a dense R. maximum subcanopy. The treatments were designed to remove only soil O-horizon (FF), remove only R. maximum (CR), remove R. maximum and soil O-horizon (CFFR), and untreated, reference (REF). We installed permanent plots across treatments and locations and measured light transmittance (Qi/Qo), soil water content (θ), herbaceous-layer cover and diversity (Shannon’s index (H′cover) and species richness), and tree seedling recruitment.

As expected, cutting the R. maximum subcanopy (CR and CFFR) immediately increased Qi/Qo in the spring months across locations, and it was sustained through the first growing season. θ was generally high across plots, averaging 26% during the growing season, and didn’t vary over time. By the second growing season (2017) after treatments, herbaceous-layer cover and diversity increased on CR and CFFR. Herbaceous-layer cover was significantly related to Qi/Qo (r2 = 0.22, p < 0.001) and θ (r2 = 0.13, p = 0.009), while diversity was only related to Qi/Qo (H′cover, r2 = 0.14, p < 0.001; species richness, r2 = 0.21, p < 0.001). Tree seedling density was related to Qi/Qo (r2 = 0.10, p = 0.001) and θ (r2 = 0.26, p < 0.001). Tree seedling density was low before treatment (1.4 ± 0.3 seedlings m−2) and increased by 10-fold in CR and CFFR two growing seasons after treatment. In CR, species with the highest density ranked Betula spp. > Acer rubrum > Quercus coccinea > Liriodendron tulipifera > Q. rubra. In CFFR, tree seedling recruitment ranked Betula spp. > A. rubrum > L. tulipifera. These vegetation responses have important implications for potential recovery of riparian forests following T. canadensis mortality.

  • Citation: Elliott, Katherine J.; Miniat, Chelcy F. 2018. Herbaceous-layer diversity and tree seedling recruitment are enhanced following Rhododendron maximum shrub removal. Forest Ecology and Management. 430: 403-412. https://doi.org/10.1016/j.foreco.2018.08.016.
  • Keywords: Hemlock, Tsuga canadensis, restoration' prescribe fire, evergreen shrub, southern Appalachians
  • Posted Date: September 10, 2018
  • Modified Date: November 12, 2020
  • Print Publications Are No Longer Available

    In an ongoing effort to be fiscally responsible, the Southern Research Station (SRS) will no longer produce and distribute hard copies of our publications. Many SRS publications are available at cost via the Government Printing Office (GPO). Electronic versions of publications may be downloaded, printed, and distributed.

    Publication Notes

    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
    • Our online publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact the SRS webmaster if you notice any errors which make this publication unusable.
    • To view this article, download the latest version of Adobe Acrobat Reader.