Effects of solar heating on the moisture dynamics of forest floor litter in humid environments: composition, structure, and position matter

Abstract

Much of fire behavior is driven by fine-scale patterns of fuel moisture; however, moisture predictions typically occur over large scales. The source of fine-scale variation in moisture results from a combination of fuelbed properties and overstory forest structure that influences water movement and distribution of solar radiation. Fine-scale moisture variation is of particular relevance in humid forests managed with frequent prescribed fire where fire behavior variation is tightly linked to differential fire effects. Results of a three-tiered experiment combining laboratory and field methods demonstrated that solar radiation exerted a strong influence on fuel moisture patterns in a temperate humid pine forest. Infrared radiation more rapidly dried Quercus and Pinus litter in laboratory experiments compared with controls. Litter exposed to sunlight during small-scale outdoor experiments was significantly drier than shaded litter. Quercus litter was wetter than Pinus on mornings, but dried more rapidly, becoming drier than Pinus litter by mid-day when exposed to sunlight. Field observations validated small-scale outdoor and laboratory results but also revealed the influence of fuel position: elevated litter was wetter than ground-level litter at peak burning time. Results provide insight into how overstory structure and composition may influence fine-scale heterogeneity of surface moisture dynamics and fire behavior.

  • Citation: Kreye, Jesse K.; Hiers, J. Kevin; Varner, J. Morgan; Hornsby, Ben; Drukker, Saunders; O’Brien, Joseph J. 2018. Effects of solar heating on the moisture dynamics of forest floor litter in humid environments: composition, structure, and position matter. Canadian Journal of Forest Research. 48(11): 1331-1342. https://doi.org/10.1139/cjfr-2018-0147.

Requesting Print Publications

Publication requests are subject to availability. Fiscal responsibility limits the hardcopies of publications we produce and distribute. Electronic versions of publications may be downloaded, distributed and printed.

Please make any requests at pubrequest@fs.fed.us.

Publication Notes

  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • Our online publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact the SRS webmaster if you notice any errors which make this publication unusable.
  • To view this article, download the latest version of Adobe Acrobat Reader.