Soil microbial response to Rhododendron understory removal in southern Appalachian forests: Effects on extracellular enzymes

Abstract

Rhododendron maximum is a native evergreen shrub that has expanded in Appalachian forests following declines of american chestnut (Castanea dentata) and eastern hemlock (Tsuga canadensis). R. maximum is of concern to forest managers because it suppresses hardwood tree establishment by limiting light and soil nutrient availability. We are testing R. maximum removal as a management strategy to promote recovery of Appalachian forests. We hypothesized that R. maximum removal would increase soil nitrogen (N) availability, resulting in increased microbial C-demand (i.e. increased C-acquiring enzyme activity) and a shift towards bacterial-dominated microbial communities. R. maximum removal treatments were applied in a 2 × 2 factorial design, with two R. maximum canopy removal levels (removed vs not) combined with two O-horizon removal levels (burned vs unburned). Following removals, we sampled soils and found that dissolved organic carbon (DOC), N (TDN, NO3, NH4), and microbial biomass all increased with R. maximum canopy + O-horizon removal. Additionally, we observed increases in C-acquisition enzymes involved in degrading cellulose (β-glucosidase) and hemicellulose (β-xylosidase) with canopy + O-horizon removal. We did not see treatment effects on bacterial dominance, though F:B ratios from all treatments increased from spring to summer. Our results show that R. maximum removal stimulates microbial activity by increasing soil C and N availablility, which may influence recovery of forests in the Appalachian region.

  • Citation: Osburn, Ernest D.; Elliottt, Katherine J.; Knoepp, Jennifer D.; Miniat, Chelcy F.; Barrett, J.E. 2018. Soil microbial response to Rhododendron understory removal in southern Appalachian forests: Effects on extracellular enzymes. Soil Biology and Biochemistry. 127: 50-59. https://doi.org/10.1016/j.soilbio.2018.09.008.
  • Keywords: Rhododendron maximum, carbon, nitrogen, extracellular enzymes, bacteria, fungi
  • Posted Date: February 22, 2019
  • Modified Date: June 20, 2019
  • Print Publications Are No Longer Available

    In an ongoing effort to be fiscally responsible, the Southern Research Station (SRS) will no longer produce and distribute hard copies of our publications. Many SRS publications are available at cost via the Government Printing Office (GPO). Electronic versions of publications may be downloaded, printed, and distributed.

    Publication Notes

    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
    • Our online publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact the SRS webmaster if you notice any errors which make this publication unusable.
    • To view this article, download the latest version of Adobe Acrobat Reader.