Fire behaviour and smoke modelling: model improvement and measurement needs for next-generation smoke research and forecasting systems

  • Authors: Liu, Yongqiang; Kochanski, Adam; Baker, Kirk R.; Mell, William; Linn, Rodman; Paugam, Ronan; Mandel, Jan; Fournier, Aime; Jenkins, Mary Ann; Goodrick, Scott; Achtemeier, Gary; Zhao, Fengjun; Ottmar, Roger; French, Nancy H. F.; Larkin, Narasimhan; Brown, Timothy; Hudak, Andrew; Dickinson, Matthew; Potter, Brian; Clements, Craig; Urbanski, Shawn; Prichard, Susan; Watts, Adam; McNamara, Derek
  • Publication Year: 2019
  • Publication Series: Scientific Journal (JRNL)
  • Source: International Journal of Wildland Fire
  • DOI: 10.1071/WF18204

Abstract

There is an urgent need for next-generation smoke research and forecasting (SRF) systems to meet the challenges of the growing air quality, health and safety concerns associated with wildland fire emissions. This review paper presents simulations and experiments of hypothetical prescribed burns with a suite of selected fire behaviour and smoke models and identifies major issues for model improvement and the most critical observational needs. The results are used to understand the new and improved capability required for the next-generation SRF systems and to support the design of the Fire and Smoke Model Evaluation Experiment (FASMEE) and other field campaigns. The next-generation SRF systems should have more coupling of fire, smoke and atmospheric processes. The development of the coupling capability requires comprehensive and spatially and temporally integrated measurements across the various disciplines to characterise flame and energy structure (e.g. individual cells, vertical heat profile and the height of well-mixing flaming gases), smoke structure (vertical distributions and multiple subplumes), ambient air processes (smoke eddy, entrainment and radiative effects of smoke aerosols) and fire emissions (for different fuel types and combustion conditions from flaming to residual smouldering), as well as night-time processes (smoke drainage and super-fog formation).

  • Citation: Liu, Yongqiang; Kochanski, Adam; Baker, Kirk R.; Mell, William; Linn, Rodman; Paugam, Ronan; Mandel, Jan; Fournier, Aime; Jenkins, Mary Ann; Goodrick, Scott; Achtemeier, Gary; Zhao, Fengjun; Ottmar, Roger; French, Nancy H. F.; Larkin, Narasimhan; Brown, Timothy; Hudak, Andrew; Dickinson, Matthew; Potter, Brian; Clements, Craig; Urbanski, Shawn; Prichard, Susan; Watts, Adam; McNamara, Derek. 2019. Fire behaviour and smoke modelling: model improvement and measurement needs for next-generation smoke research and forecasting systems. International Journal of Wildland Fire. https://doi.org/10.1071/WF18204.
  • Keywords: burn plan and measurement design, CMAQ, Daysmoke, FIRETEC, WFDS, WRF-SFIRE-CHEM
  • Posted Date: July 30, 2019
  • Modified Date: August 5, 2019
  • Print Publications Are No Longer Available

    In an ongoing effort to be fiscally responsible, the Southern Research Station (SRS) will no longer produce and distribute hard copies of our publications. Many SRS publications are available at cost via the Government Printing Office (GPO). Electronic versions of publications may be downloaded, printed, and distributed.

    Publication Notes

    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
    • Our online publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact the SRS webmaster if you notice any errors which make this publication unusable.
    • To view this article, download the latest version of Adobe Acrobat Reader.