Influence of Soil Colloids on the Migration of Atrazine and Zinc Through Large Soil Monoliths

  • Authors: Barton, C. D.; Karathanasis, A. D.
  • Publication Year: 2003
  • Publication Series: Scientific Journal (JRNL)
  • Source: Water, Air, and Soil Pollution
  • DOI: 10.1023/A:1022886225564


The role of soil colloids and their potential to co-transport agrochemicals in subsurface soil environments was evaluated in aleaching experiment utilizing large soil monoliths. The monolithswere created by hydraulically driving steel pipe sections (50 cm diameter × 50 cm length) into Maury silt loam (fine, mixed, mesic Typic Paleudalf) and Loradale silt loam (fine, silty, mixed mesic Typic Argiudoll) soils. Water dispersible colloids fractionated from the Bt horizons of the above soilswere spiked with 3 mg L-1 atrazine (2-chloro-4-ethylamino-6-isopropylamine-s-triazine) and 10 mg L-1 zinc (Zn), and after a twenty-four hour equilibration were applied into the monoliths at eight hour intervals using 500 mL pulse applications. Solutions containing atrazine and Znwithout added colloids were applied to separate monoliths from each soil to represent control treatments. Colloid, atrazine, andZn recoveries in the eluent varied greatly with respect to soiltype. Colloid recovery in the Loradale monoliths averaged 65.1 ± 26.5%, with maxima approaching the input level, while in the Maury monoliths the average recovery was low (5.7 ± 6.2%) and never exceeded 25% of the input level. Atrazine eluted from the two monoliths averaged 40.3 ± 12.5% (Loradale) and 29.0 ± 20.0% (Maury), with considerable enhancement in the presence of colloids, especially in the Loradale soil. In contrast, the elution of Zn averaged 3.0 ±3.2%, in the Loradale monoliths and rarely exceeded control concentrations in the Maury monoliths, suggesting a stronger retardation of Zn over atrazine within the soil matrix, especially when colloid transport was deterred. Settling-rateexperiments at varying pH and electrical conductivity (EC) valuessuggested that the transport of Maury colloids may have been hindered due to flocculation within the monoliths, while the Loradale colloids remained stable throughout the leaching experiment. Although the presence of colloids enhanced atrazineelution in all monoliths, the actual amount of atrazine transported bound to either colloid type was minimal, suggestingmainly physical exclusion transport processes. In contrast, stronger chemisorption of Zn to colloid surfaces than the soil matrix appeared to enhance the transport of Zn by both colloids.

  • Citation: Barton, C. D.; Karathanasis, A. D. 2003. Influence of soil colloids on the migration of atrazine and zinc through large soil monoliths. Water, Air, and Soil Pollution. 143: 3-21.
  • Posted Date: May 7, 2020
  • Modified Date: May 20, 2020
  • Print Publications Are No Longer Available

    In an ongoing effort to be fiscally responsible, the Southern Research Station (SRS) will no longer produce and distribute hard copies of our publications. Many SRS publications are available at cost via the Government Printing Office (GPO). Electronic versions of publications may be downloaded, printed, and distributed.

    Publication Notes

    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
    • Our online publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact the SRS webmaster if you notice any errors which make this publication unusable.
    • To view this article, download the latest version of Adobe Acrobat Reader.