Vegetation’s influence on fire behavior goes beyond just being fuel

Abstract

Background: The structure and function of fire-prone ecosystems are influenced by many interacting processes
that develop over varying time scales. Fire creates both instantaneous and long-term changes in vegetation (defined
as live, dead, and decomposing plant material) through combustion, heat transfer to living tissues, and subsequent
patterns of recovery. While fuel available for combustion may be relative to the amount of vegetation, it is equally
instructive to evaluate how the physical structure and other characteristics of vegetation influence fire dynamics, and
how these interactions change between fire events. This paper presents a conceptual framework for how vegetation
not only embodies the legacy of previous fires but creates the physical environment that drives fire behavior beyond
its combustion as a fuel source.
Results: While many environmental factors affect both the post-fire vegetation trajectory and fire dynamics themselves,
we present a conceptual framework describing how vegetation’s structural characteristics control the local
microclimate and fluid dynamics of fire-induced flows, and how that is influenced by ecosystem and atmospheric
processes. Shifting our focus from fuels to vegetation allows us to integrate spatial and temporal feedbacks between
fire, vegetation, soil, and the atmosphere across scales. This approach synthesizes the combustion and flammability
science, the physical influence on fire behavior, and the ecosystem dynamics and processes that occur between fires
and within a fire regime.
Conclusions: We conclude that fire behavior, including its prediction and ecological effects, should be broadened to
include the dynamic processes that interact with vegetation, beyond its role as fuel. Our conceptual framework illustrates
the crucial feedbacks across scales that link the finer details of vegetation and fire behavior processes that occur
within a fire and have additive effects that feedback into the coarser scale processes and functions within an ecosystem.
Shifting the fuels paradigm to integrate the combustion, physical, and ecological roles of vegetation as complex
drivers of fire behavior and outcomes will broaden discovery within wildland fire science and ecology.

  • Citation: Loudermilk, E. Louise; O'Brien, Joseph J.; Goodrick, Scott L.; Linn, Rodman R.; Skowronski, Nicholas S.; Hiers, J. Kevin. 2022. Vegetation's influence on fire behavior goes beyond just being fuel. Fire Ecology. 18(1): 130-. https://doi.org/10.1186/s42408-022-00132-9.
  • Keywords: Ecology of Fuels, Wildland fire, Microenvironment, Fire effects, Feedbacks, Fire behavior
  • Posted Date: August 18, 2022
  • Modified Date: August 19, 2022
  • Print Publications Are No Longer Available

    In an ongoing effort to be fiscally responsible, the Southern Research Station (SRS) will no longer produce and distribute hard copies of our publications. Many SRS publications are available at cost via the Government Printing Office (GPO). Electronic versions of publications may be downloaded, printed, and distributed.

    Publication Notes

    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
    • Our online publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact the SRS webmaster if you notice any errors which make this publication unusable.
    • To view this article, download the latest version of Adobe Acrobat Reader.