Effect of Leptographium terebrantis on foliage, new root dynamics, and stemwood growth in a loblolly pine (Pinus taeda L.) plantation

Abstract

The course of the bark beetle-vectored fungus, Leptographium terebrantis S. J. Barras and T. J. Perry, in stemwood growth loss of declining pines in the southeastern United States was assessed in a 13-year-old loblolly pine (Pinus taeda L.) plantation near Eufaula, Alabama, U.S.A. Using stem inoculation as a surrogate for root infection, we hypothesized that L. terebrantis infection impairs sapwood function and thus limits the tree leaf area (AL), new root production, and stemwood growth. Sterile toothpicks colonized by L. terebrantis at varying inoculum densities was used to elicit host growth responses. In the third year after inoculation, the root pathogen reduced the foliage moisture content, whole-tree leaf area (AL), the ratio of AL to tree sapwood area (AS), and stemwood growth in trees receiving the high inoculation treatment relative to those receiving the low or medium inoculation treatments, or the wound or control treatments after seven months of water deficit. The absence of a similar response to water deficit among trees that were noninoculated, wounded, or inoculated at the low or medium densities suggests that, in the loblolly pine–L. terebrantis pathosystem at our study site, the physiological stress caused by water deficit and the high inoculum density was required for the pathogen to elicit a stemwood growth loss. Thus, in loblolly pine forests of the southeastern United States, where climate and soil conditions yield prolonged periods of physiological stress, the presence of L. terebrantis has the potential to reduce stand volume and widen the gap between the predicted and actual stemwood production.

  • Citation: Mensah, John K.; Sayer, Mary Anne S.; Nadel, Ryan L.; Duwadi, Shrijana; Fan, Zhaofei; Carter, Emily A.; Eckhardt, Lori G. 2022. Effect of Leptographium terebrantis on foliage, new root dynamics, and stemwood growth in a loblolly pine (Pinus taeda L.) plantation. Forests. 13: 1335. 18 p. https://doi.org/10.3390/f13081335.
  • Keywords: decline, drought, hydraulic adjustment, inoculation, leaf area, physiological stress
  • Posted Date: September 2, 2022
  • Modified Date: September 12, 2022
  • Print Publications Are No Longer Available

    In an ongoing effort to be fiscally responsible, the Southern Research Station (SRS) will no longer produce and distribute hard copies of our publications. Many SRS publications are available at cost via the Government Printing Office (GPO). Electronic versions of publications may be downloaded, printed, and distributed.

    Publication Notes

    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
    • Our online publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact the SRS webmaster if you notice any errors which make this publication unusable.
    • To view this article, download the latest version of Adobe Acrobat Reader.