Calibrating soil respiration measures with a dynamic flux apparatus using artificial soil media of varying porosity

  • Authors: Butnor, John R.; Johnsen, Kurt H.
  • Publication Year: 2004
  • Publication Series: Miscellaneous Publication
  • Source: European Journal of Soil Science, December 2004, 55, 639–647

Abstract

Measurement of soil respiration to quantify ecosystem carbon cyclingrequires absolute, not relative, estimates of soil CO2 efflux. We describe a novel, automated efflux apparatus that can be used to test the accuracy of chamber-based soil respiration measurements by generating known CO2 fluxes. Artificial soil is supported above an air-filled footspace wherein the CO2 concentration is manipulated by mass flow controllers. The footspace is not pressurized so that the diffusion gradient between it and the air at the soil surface drives CO2 efflux. Chamber designs or measurement techniques can be affected by soil air volume, hence properties of the soil medium are critical. We characterized and utilized three artificial soils with diffusion coefficients ranging from 2.7 x 10-7 to 11.9 x 10-7 m2s-1 and porosities of 0.26 to 0.46. Soil CO2 efflux rates were measured usinga commercial dynamic closed-chamber system (Li-Cor 6400 photosynthesis system equipped with a 6400-2009 soil CO2 flux chamber). On the least porous soil, small underestimates (<5%) of CO2 effluxes were observed, which increased as soil diffusivity and soil porosity increased, leadingto underestimates as high as 25%. Differential measurement bias across media types illustrates the need for testing systems on several types of soil media.

  • Citation: Butnor, John R.; Johnsen, Kurt H. 2004. Calibrating soil respiration measures with a dynamic flux apparatus using artificial soil media of varying porosity. European Journal of Soil Science, December 2004, 55, 639–647
  • Posted Date: April 1, 1980
  • Modified Date: August 22, 2006
  • Requesting Print Publications

    Publication requests are subject to availability. Fiscal responsibility limits the hardcopies of publications we produce and distribute. Electronic versions of publications may be downloaded, distributed and printed.

    Please make any requests at pubrequest@fs.fed.us.

    Publication Notes

    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
    • Our online publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact the SRS webmaster if you notice any errors which make this publication unusable.
    • To view this article, download the latest version of Adobe Acrobat Reader.