IDENTIFYING LOBLOLLY PINE AND FOUR COMMON COMPETING
HARDWOOD SPECIES USING MULTISPECTRAL REFLECTANCE ANALYSIS

T.C. Knight, A.W. Ezell, D.R. Shaw, J.D. Byrd, and D.L Evans'

Abstract—Multispectral reflectance data were collected in midrotation loblolly pine plantations during spring, summer, and
fall seasons with a hand-held spectroradiometer. All data were analyzed by discriminant analysis. Analyses resulted in
species classifications with accuracies of 83 percent during the spring season, 54 percent during summer, and 82 percent
during fall. Loblolly pine was correctly identified 100 percent of the time using the spring data. Multispectral remote sensing
appears valuable in determining the level of hardwood competition within midrotation pine plantations and for separating pine

from nonpine competitors.

INTRODUCTION

The art and science of forest management starts with field
measurement. No forest, regardless of size or location, can
be properly managed without a thorough knowledge of the
forest conditions on site. Based on site assessment, silvicul-
tural prescriptions can be formulated. Throughout the life or
“rotation” of a forest stand, many problems may arise. Some
result in detrimental effects on the growth and productivity of
the stand. These include, but are not limited to, insect, fun-
gal, bacterial, mammalian, and avian influences. The pre-
sence of other botanical species on the site can greatly
influence pine growth as well. In most forest stands, noncrop
species form a competitive relationship with the desired crop
species; all compete for space, water, nutrients, and light.

BACKGROUND

The effects of competition on pine growth have been well
researched. Control of hardwoods in young loblolly pine
(Pinus taeda L.) stands is a management option that has
resulted in good pine growth responses (Fortson and
others 1996, Quicke and others 1996, Zutter and others
1988). Not only is the response to competition control at an
early plantation age positive, but removal of competition at
midrotation has proven to be beneficial as well. Investiga-
tors found that in treated plots within a 14-year-old pine
plantation, basal area and volume of pine increased 11 per-
cent and 20 percent, respectively, over all treatments com-
pared to nontreated controls (Fortson and others 1996).
Quicke (2001) also found that competition control in a 14-
year-old pine plantation positively influenced pine growth.
Six years after treatment, pine growth was 20 percent
greater in treated plots than in control plots, yielding an
additional %2 cord per acre per year.

Economic benefits of competition control—There are
positive economic returns to midrotation hardwood control
in pine plantations. Kline and Kidd (1986) estimated that
under conservative economic assumptions, a 10-percent
reduction in hardwood basal area yielded an average of
$105 per acre increase in the net present value of a loblolly

pine plantation. This estimate was based on a stand with a
site index of 69 feet at base age 25 and grown through a
30-year rotation age. One study found that investment in
midrotation hardwood control returned 8 percent to 14 per-
cent annually over the remaining life of a rotation (Caulfield
and others 1999). This study evaluated the returns to
investment in herbicide application costs based on differing
levels of control success and varying prices of pine pro-
ducts but did not include the costs of the competition
control need assessment.

The competition assay—Assessment of competing vege-
tation within a pine plantation currently requires on-site
measurement. As with most measurements conducted for
silvicultural assessments, this often requires plots be
established and physical measurements taken. Although
per acre costs for such labor-intensive measurements
decline as acreage increases, it remains a notable expense.
Some classification systems have been outlined that require
fewer measurements but include ocular estimates of com-
petitive factors (Zutter and others 1984). The problem with
these methods is the introduction of some degree of
subjectivity because the systems are ocular rather than
measured quantitative methods. However, the advantage
of these methods is the ability to characterize species of
competing woody vegetation.

Remote Sensing as a Means to Assess
Competition

In order to reduce labor costs from on-site visits, other
means to assess competitive conditions must be found.
One promising way to make this determination with very
limited in situ visitation is through the use of remote
sensing and analysis. To effectively assess competition
within a pine plantation, some means must be found to
separate competitive species from the pine crop on the
remotely acquired image.

Species’ spectral responses—Separation of spectral
responses has been a problem confronted by many investi-
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gators. From the beginning of multispectral remote sensing,
scientists have investigated many variables that influence
spectral signatures. These variables range from the chemi-
cal properties of the plant to environmental stresses exper-
ienced by the tree. Spectral signatures can vary simply
based on the position individual leaves occupy on the tree.
Atkinson and others (1997) found that leaf samples from
two species of European birch taken from stump and basal
sprouts were dissimilar in spectral response to samples
taken from the lower crown. Other research found that con-
centrations of chlorophyll determine spectral response in
the electromagnetic wavelengths between 400 and 700 nm
(Gitelson and others 1996, Tucker and Garrett 1977). Stress
factors (Westman and Price 1987), foliage age and posi-
tion in the canopy (Atkinson and others 1997, Danson 1995,
Gausman 1985), nitrogen and lignin concentrations (Martin
and others 1998), and other variables can cause variation
in reflectance.

The best means to differentiate species may not be through
pure spectral signature; it may be best to identify spectral
regions occupied by the spectral radiance of species rela-
tive to neighboring species. Regardless of environmental or
biotic influences, it might be assumed that all individuals of
a species occupying a particular site will exhibit similar
reactions to those influences and, hence, similar changes
in spectral reflectance characteristics. The use of statistical
analysis may define this region relative to other species
growing under the same conditions (Curran and Atkinson
1998). Extensive use could be made of a method to simply
identify pine and nonpine located within a pine plantation,
but a means to identify the particular species growing in
competition with the loblolly pine would be more valuable.
Because species separation is desirable for competitive
assessment, a need has been identified to assess means
to spectrally differentiate loblolly pine and competing hard-
wood trees in pine plantations.

Spectral separation of pine from competition—The basis
of this study relies heavily on the fact that the number of
hardwood species in direct competition with loblolly pine in
plantation environments is finite. The most important com-
peting species can be grouped to include gums, oaks,
hickories, and elms. Theoretically, since species found
within an individual pine plantation are subjected to the
same influences, it may be possible to assume these
species occupy a spectral position relative to each other,
which changes in only minor ways with changes in soil
moisture, fertility, and other abiotic factors. Based on this
assumption, first advanced by Cochrane (2000), it is
believed that most of the important competitive woody
species will occupy a fairly constant spectral region relative
to the region occupied by loblolly pine. Although the spec-
tral relationship between species may change from season
to season, it should prove fairly constant during the same
season from year to year. This study was undertaken to
determine a methodology to separate species based on
spectral response.

MATERIAL AND METHODS

Loblolly pine plantations in Attala County, MS, were
selected for this study. The site was chosen based on pine
plantation ages and site characteristics. The area consists

of 1,100 acres of pine plantations, natural pine-hardwood
stands, and agricultural fields. Within this study area, three
plantations were chosen, and study sites of 1 acre each
were selected within each plantation. These sites had been
used for cotton production for many years and were
planted with loblolly pine the year following the last cotton
crop. Site and stand conditions ranged from a low alluvial
site with a plantation age of 15 years to an upland site with
a plantation age of 18 years. The sites occur in the sand-
clay hills physiographic region of Mississippi. The soil was
originally overlain by a thin layer of loessial brown loam
which has, in most instances, been lost to erosion.

Data Collection

Site locations were accurately defined using a Global
Positioning System (GPS). During this phase, site boundar-
ies were established for eventual airborne data collection.
Handheld spectroradiometer (HHSR) measurements were
taken within each plantation on representatives of major
woody species selected for this study. Species were
selected based on their position within the canopy of the
plantations. Species common to each site and with crowns
positioned in the upper canopy with the loblolly pine crop
were chosen for this study; they included sweetgum
(Liquidambar styraciflua L.), winged elm (Ulmus alata
Michx.), water oak (Quercus nigra L.), and white oak
(Quercus alba L.) and the crop species, loblolly pine.

GPS data collection—A Landmark GPS (Landmark
Systems Inc., Tallahassee, FL, U.S.A.) connected to a
Juniper Pro4000 (Juniper Systems Inc., Logan, UT, U.S.A.)
field computer was used for this study. The system
incorporated a Trimble AG132 (Trimble Navigation Ltd.,
Sunnyvale, CA, U.S.A.) receiver and large dome antenna
using an Omni Star Geostationary Satellite (Omnistar Inc.,
Houston, TX, U.S.A.) for differential correction. Global
positioning was used to determine area boundaries of the
study sites by latitude and longitude.

HHSR data collection—On-site spectral data were col-
lected using a Field Spec Pro FR portable spectroradio-
meter (Analytical Spectral Devices, Inc., Boulder, CO,
U.S.A.). The HHSR measures spectral responses of
reflecting objects in the electromagnetic spectrum range of
350 to 2,500 nm. The device has a spectral resolution of 3
nm from 350 to 700 nm and 30 nm at 1,400 nm and
higher. Although the device is capable of providing reflect-
ance data in each of 2,151 individual spectral bands from
visible to far infrared, only four multispectral bands were
used in this study (green, red, red-edge, and near infrared)
as they coincided with available airborne instrument capa-
bility used in a companion study. The bands were centered
on 550, 675, 700 and 840 nm, respectively, with a band-
width of + 5 nm. Extracted multispectral data included each
of these bands. A fiber-optic strand is used to transmit
electromagnetic energy from the “pistol grip” head to the
recording unit; in this study, the bare fiber was used in
order to get a wide field of view of foliage. The field of view
was approximately 230 at the fiber-optic tip. The tip was
held 1.5 feet from the sample to collect spectral radiance
information from the entire branch rather than individual
leaves. The samples were placed on a 3 by 4 foot black
foam-core board for data collection to reduce spectral
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noise. The device was calibrated using a white reference
tile every 2 to 5 minutes. The calibration was performed to
assure changing atmospheric conditions, and battery
power did not bias the reflectance values.

HHSR data were collected to document two transition sea-
sons (fall and spring) and midgrowing season (summer)
conditions. Data collection was attempted on numerous
occasions, but most failed due to inclement weather.
Successful data collection was made in November 2001,
April 2002, and August 2002 to represent fall, spring, and
summer samples, respectively. HHSR measurements were
taken between 10:00 a.m. and 2:00 p.m. on cloudless days
to insure consistent sun angle and radiance magnitude.
The spectral-reflectance data were collected for both lob-
lolly pine and four woody competitors located within the
pine plantation study site. On each day that data were
collected, representative samples of each species were
collected from each study area and immediately measured
with the HHSR against a flat black panel. A full branch from
the species being collected was cut and oriented upright
against the panel in a manner similar to that which would
be measured by an airborne sensor. Samples were mea-
sured within 3 to 5 minutes of harvest to avoid changes in
chemistry and physiology of the plant material. Samples
were measured in full sunlight at any convenient open
central location adjacent to or within the study area. To
reduce noise, all profile measurements were calculated as
averages of 20 sampling points. Each sample was taken
from a different individual within the study area. Care was
taken to collect samples growing in full sun to mimic those
clearly visible on aerially collected images. The multispec-
tral data were converted to text format by software pro-
vided by the manufacturer of the HHSR. The converted
data included the wavelengths, spectral response values,
and sample numbers. The converted data were loaded into
Microsoft Excel spreadsheet software (Microsoft
Corporation, Redmond, WA, U.S.A.). In this format, each
sample was labeled for name of the appropriate species
recorded for that repetition. The data were arranged by
band and grouped by species.

DATA ANALYSIS

Indices, including the normalized vegetation index (NDVI),
the normalized vegetation index with green band (NDVIg),
red vegetation index (RVI), and the density vegetation
index (DVI) were added to the data set and treated as
spectral bands (table 1). The indices provided additional
“bands” of data previously proven useful in separating
vegetation characteristics. These additional bands were
added to increase the power of statistical analyses and the
chances of accurate classification. The results were eight
“bands” for analysis: green, red, RE, NIR, NDVI, NDVlg,
DVI, and RVI. All statistical analysis was accomplished
using Minitab 13.32 statistical analysis software (Minitab
Inc., State College, PA 16801, U.S.A.). The eight bands
were then subjected to correlation tests. Statistical analysis
was completed by discriminant analysis using each of the
band combinations derived from the above steps. The
purpose of this analysis was to find a minimal set of bands
that, when used in combination, held the best promise for
discriminating between species.
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Table 1—Vegetation indices used as
additional bands in multispectral data

analysis

Index name Index formula
NDVI NIR-Red/NIR+Red
NDVlg NIR-Green/NIR+Green
RVI NIR/Red

DVI NIR-Red

NDVI = normalized vegetation index; NDVIg =
normalized vegetation index with green band; RVI
= red vegetation index; DVI = density vegetation
index.

Correlation analysis—Huberty and Wisenbaker (1992)
reported that using correlated bands in combination will
result in discriminant analysis functions with false positive
classification accuracy results. To eliminate variables
(bands), which would tend to skew discriminant power, a
correlation analysis was performed for all bands and
indices in combination. Bands found to be correlated with
other bands were removed from the final analysis.

Discriminant analysis—Discriminant analysis was con-
ducted to test the performance of those bands in sepa-
rating spectra into species classes. The species groups
and band data were used as the response and predictor
variables in the discriminant analysis, respectively. After
analysis, species were cross-validated in a user accuracy
test to determine the power of the resultant discriminant
functions. Discriminant analysis is an unambiguous mathe-
matical method to determine the identity of an unknown
sample. A good discriminant function can recognize the
spectral reflectance of a species by use of a training set of
known spectral signatures of that species. Samples in the
training set are assumed to represent the variance of the
reflectance for a particular species. Discriminant analysis
allows the construction of models for each known species
that can be compared to samples of unknown species in
an attempt to classify it. The reflectance of the unknown
sample is compared to multiple models of different species.
The models can then predict the likelihood that the sample
matches the training spectral responses by returning a
“yes” or “no” answer (Thermo Galactic 2002).

In Predictive Discriminant Analysis (PDA) in this study, the
multiple response variables play the role of predictor vari-
ables, much like a regression equation. Analysis of the
variables will predict the proper classification of unknown
species reflectance values into the known species group.
Accuracy of these predictions is a direct result of the accu-
racy of the data set used to “train” the discriminant func-
tion. These training sets are made more accurate by tests
for linear relationships to eliminate problems with error
capitalization due to correlation between variables
(Huberty and Wisenbaker 1992). Although step-wise
discriminant analysis is successfully used for a variety of
data analyses, it was not used with these data because of
the inherent problems this method presents. Step-wise
analysis tends to calculate incorrect degrees of freedom,
capitalizes on relatively small sampling error (Whitaker
1997), and does not necessarily identify the best predictors



of a given data-set size (Thompson 1995). Since the pro-
bability of any sample falling within any given species
classification is not known, the statistical method assumed
prior probabilities were even; that is, the probability of a
sample being classified into any species class is assumed
to be equal throughout the data set.

When discriminant analysis was performed using the data
collected for this comparison, squared distances between
spectral signatures of the species groups were calculated.
The clearest advantage of using squared distances is that
the distances are calculated in units of standard deviation
from the group mean. This allows an assignment of a
statistical probability to the measured distance from one
species mean to the other. Squared distances are reported
here and used in this study to determine if spectral
response of each species occupies a specific spectral
region in relation to the spectral response of the other
species. In theory, sample spectra with a squared distance
of 3 nm or greater from a known species spectra have a
probability of 0.01 or less of belonging to that species.
Samples with a distance of less than 3 nm are then classi-
fied as members of the species. However, in practice,
using aerial or satellite images, researchers have found
that a distance of 10-15 nm works best as a maximum
variance for classification of data (Thermo Galactic 2002).

The drawbacks to using squared distances include the fact
that discriminant analysis relies on selecting a subset of
bands to represent the entire spectrum for a species. More
bands can not be added to increase accuracy, however,
because the method tends to “over fit” very quickly. Using a
combination of more than 10 to 15 bands can lead to Type
| errors: failing to classify species into a group in which
they belong (Thermo Galactic 2002). Although the squared
distances reported for this study are two dimensional and
can relate only to the distances between two species spec-
tral regions, it is still useful in comparing those two species.
The comparison of the spectral distance between loblolly
pine and its competitors will prove useful in determining if
the spectral regions are far enough apart to allow separa-
tion of the two species. With a maximum of four bands of
spectral data used in these analyses, using a two-dimen-
sional approach should not result in Type | errors.

RESULTS AND DISCUSSION

The multispectral data were analyzed by season of acquisi-
tion with all measurements for each collection date grouped
by species. For each season, correlation tests, PCA, and
discriminant analysis were performed to identify the bands
suitable for correctly classifying the species of interest.

Table 2—Pearson correlation coefficients of spectral values for
loblolly pine and four woody competing species from HHSR samples
taken in pine plantations in Attala County, MS

Red
Green Red edge

NIR NDVI NDVIg RVI

Spring (April 2002)

Red 0.43

Red edge 0.90 0.62

NIR 0.63 -0.15 0.53

NDVI 0.32 -0.64 0.16 0.77

NDVIg 0.14 -0.50 0.13 0.80 0.87

RVI 0.28 -0.60 0.11 0.87 0.89 0.87

DVI 0.55 -0.28 0.43 0.99 0.84 0.85 0.93
Summer (August 2002)

Red 0.76

Red edge 0.92 0.71

NIR 0.34 0.20 0.33

NDVI -0.35 -0.61 -0.27 0.62

NDVlg -0.34  -0.28 -0.24 0.75 0.86

RVI -0.45 -0.70 -0.40 0.46 0.89 0.73

DVI 0.27 0.11 0.27 1.00 0.69 0.79 0.54
Fall (November 2001)

Red 0.23

Red edge 0.49 0.82

NIR 0.33 -0.09 0.30

NDVI -0.14 -0.91 -0.62 0.48

NDVIg -0.75 0.26 -0.26 0.35 0.45

RVI -0.33  -0.79 -0.71 0.39 0.87 0.58

DVI 0.22 -0.43 -0.01 0.94 0.74 0.41 0.63

HHSR = handheld spectroradiometer; NDVI = normalized vegetation index; NDVIg =
normalized vegetation index with green band; RVI = red vegetation index; DVI = density
vegetation index.
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Correlations—Each band and all indices were tested for
correlation. In both the fall and spring data, the RVI, NDVI,
and DVI were correlated with most other bands (table 2).
The correlation of the indices with one or more of their
component bands was expected. Unexpectedly, green was
found to be highly correlated with red (Pearson correlation
coefficient of 0.76) in the August data and with NIR in the
April data. This was an interesting phenomenon in that
combinations including green, red, and NIR see widespread
use for classification purposes. Although the NDVIg index
is a function of both the green and NIR bands, it was found
to be correlated with only one or the other of its components
in any single data set. The significance of this relationship
is not known.

Bands were chosen for inclusion in further analysis by
direct observation of the correlation matrices and manually
selecting combinations of bands not correlated with any
other bands in the proposed combination. Bands were
assumed to be correlated if the Pearson correlation coeffi-
cients were between 0.60 and 1.00 (positive correlation)
and -1.00 and -0.60 (negative correlation). Possible vari-
able combinations remaining after correlation tests are
shown in table 3. It is interesting to note that only the
August and November data have a combination in common
(combination two - green, NIR, and RVI).

Discriminant analysis—Discriminant analysis revealed
that there was no real difference between classification
accuracy of the April and November data sets. The dis-
criminant function classified species with 82-and 83-per-
cent accuracy using the November and April HHSR data,

respectively (table 4). The August data performed much
less effectively. The best classification accuracy was 51
percent and used the combination of red, NIR, and NDVI.
The highest classification accuracy obtained with the
spring data was the combination of the green, red, and DVI
bands. For the November data, the combination of green,
NIR, and RVI was most effective.

Species classification accuracy—A band combination
common to both the November and August data sets
(Combination 2, table 3) was the most effective band
combination for predicting species classification in the
November data and the least effective when used for the
August data. The green, NIR, and RVI combination in the
August data correctly classified species to class with only
41 percent accuracy but with 82 percent accuracy using
the November data (table 4). This indicates that the wide-
spread use of standard band combinations (i.e., green,
red, NIR) or indices may not return the highest and most
accurate classification for any two data sets. Because
loblolly pine is the crop species and most important in
classification accuracy, observations on classification of
this species are of particular importance. With the April
data set, loblolly pine was 100 percent correctly classified
(table 5). However, in the November data set, classification
accuracy was only 80 percent, with loblolly erroneously
classified as winged elm. Although overall classification
accuracy (table 4) was statistically the same for both the
April and November samples, the fact that the crop species
was always correctly classified in the April data makes this
season more attractive for separating this species from its
main competitors. Winged elm was incorrectly classified 40

Table 3—Usable band and indices combinations derived from
statistical tests of seasonal HHSR data

Combination 1

Combination 2

Combination 3

April Green, Red, NDVIg
August Green, Red, NDVIg
November Green, Red, NIR

Green, Red, RVI Green, Red, DVI
Green, NIR, RVI
Green, NIR, RVI

Red, NIR, NDVI
NIR, NDVlg, RVI

HHSR = handheld spectroradiometer; NDVI = normalized vegetation index; NDVIg =
normalized vegetation index with green band; RVI = red vegetation index; DVI = density

vegetation index.

Table 4—Overall classification accuracy of band
combinations using discriminant analysis of
multispectral bands and indices

Most effective Classification

Data set band combination accuracy
percent
April green, red, DVI 83
August green, NIR, NDVI 54
November green, NIR, RVI 82

DVI = density vegetation index; NDVI = normalized
vegetation index; RVI = red vegetation index.
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Table 5—Percentage of loblolly pine and four
competing woody species’ samples correctly
classified to species group using
discriminant analysis functions

Species groups

Data set LOB  SWG WAO WHO WIE
---------- percent - - - - - - - - - -

April 100 83 100 75 60

August 50 56 19 75 56

November 80 100 75 67 100

LOB = loblolly pine; SWG = sweet gum; WAO = water
oak; WHO = white oak; WIE = winged elm.



percent of the time in the April dataset but was correctly
classified 100 percent of the time in the November data
set. Forty percent of winged elm was classified as white
oak using the April data. Thirty-three percent of white oak
was classified as water oak using the November data, and
25 percent was classified this way in the April data. This
may indicate that the oaks are somewhat similar in reflect-
ance during most of the year. However, control prescrip-
tions may not need to be altered by any misclassification of
these species since current control methods are similar for
most oak species.

Squared distances and misclassification—One of the
hypotheses of this study is that species reflectance values
may occupy spectral regions that stay constant in relation
to their distances from the spectral regions of other species.
If this theory were correct, then species separation using
spectral reflectance would prove successful regardless of
biotic and abiotic influences on the species because all
species on a particular site would be subject to the same
influences. An observation of the squared distances
between loblolly pine and four competitive hardwood
species examined in this study proves this theory is not
upheld from season to season. The squared distances
between the spectral range of loblolly pine and its compe-
titors vary by season (table 6); the average squared
distances become much less during the August period.
Although the table indicates the average squared distances
for all samples, reflectance values of individual trees may
be much closer, thus indicating the standard deviations of
spectral values change dramatically due to seasonal influ-
ences. In the November data set, loblolly pine was mis-
classified as winged elm. The average squared distance
between the misclassified loblolly pine and winged elm
samples was 1.598 nm. The probability of loblolly being
classified as winged elm was 52.8 percent due to close
spectral proximity of the two species. In this particular
study, overall seasons and all data, misclassifications
occurred when the squared distances were less than or
equal to 8.6991 nm. The mean squared distances between
species misclassified was 2.507, and the median squared
distance was 2.151 with a standard deviation of 1.75505.
Standard error of squared distances between misclassified
species was 0.2676. It is assumed that the threshold

Table 6—Average squared distances between
loblolly pine spectra and the spectral regions of
selected hardwood species based on band
combinations? with highest overall classification
accuracy

Species April August November
Water oak 6.7792 5.3399 5.9066
Sweetgum 13.0503 9.8167 16.0741
White oak 15.3399 4.7059 15.5052
Winged elm 11.0394 3.8657 9.4649

#April = green and red bands and density vegetation index,
August = red and NIR bands and normalized vegetation
index, and November = green and NIR bands and red
vegetation index.

misclassification level of mean squared distances given are
unique to this study and can not be assumed for all spec-
tral response studies.

Many classification tasks undertaken in standard “off the
shelf” remote sensing software require the user to input a
maximum squared distance between spectral responses
required in order to place a spectral response in a parti-
cular class. As discussed earlier, current theory indicates
that samples with a squared distance of 3 nm or greater
have a probability of 0.01 or less of belonging to that
species, and that in actual practice users will use a dis-
tance of 10 to 15 nm (Thermo Galactic 2002). If this study
is an indicator of actual results, a user-defined squared
distance of 9 to 10 nm will return more accurate results
and may reduce “unclassified” spectral responses. How-
ever, it cannot be stated for certain that the results of this
study are globally useful.

Seasonal influences on classification accuracy—When
comparing the seasons in which data were collected, the
spring transitional season had the best overall accuracy for
species separation and was best for separation of loblolly
pine from the competitive species. During this season, the
competitive and largely deciduous species are in the “green
up” process. That is, these species have new growth and
young foliage. Loblolly pine still retains its old needle foli-
age from the preceding year and does not replace 2-year-
old needles with new foliage until later in the season.
Concentrations of chlorophyll will differ greatly during this
period. Chlorophyll concentrations have more influence on
spectral responses in the 400-to 700-nm range of electro-
magnetic wavelengths (Tucker and Garrett 1977). Although
the competitive species are in varied stages of transition
during this time period, most of the foliage on the species
is new growth (water oak individuals were observed to
have some retained foliage from the preceding year). This
similarity in foliage growth stage may explain the variability
in classification accuracy between the competitive species
(60 to 100 percent). Gausman (1985) and Atkinson and
others (1997) found that foliage age causes variation in
reflectance response.

The summer season is least useful; the spectral response
of the older foliage of all species becomes less well-
defined. The classification accuracy between deciduous
species ranges from 67 to 100 percent using the fall data,
but spectral confusion is introduced when comparing these
species with loblolly pine. The greater classification accu-
racy from fall data may be a function of the chemical
changes taking place in leaves in the fall in preparation for
winter dormancy. Chlorophyll begins breaking down, which
“unmasks” other pigments. However, confusion in the iden-
tification of pine with the competitor winged elm is an
undesirable effect.

SUMMARY AND CONCLUSIONS

Based on this study, the spring transition period appears
most valuable in determining the level of competition within
loblolly pine plantations using remote sensing reflectance
data. The overall accuracy of 83 percent is similar to the
82-percent accuracy obtained using fall transition data,

but loblolly pine can be completely separated from the
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competitive species in April. Using remote sensing reflect-
ance data, a forest manager may make decisions on com-
petition control based solely upon the proportion of nonpine
species observed in the upper canopy. If this controlled
study can be carried over into an operational environment,
it may prove particularly beneficial. However, making these
discoveries operationally useful will require further study.
The methods and findings of this study will need to be
applied to data collected by remote sensors in an opera-
tional setting to determine if the results are similar.

Remote sensing methods used in this study are not with-
out problems. Weather plays a major role in the collection
of remotely acquired data. The spring transition period
normally has many cloudy and stormy days; however,
sunny days of pristine atmospheric conditions also occur.
Flexibility in scheduling is the key to data acquisition. Even
with extensive funding from NASA’s Stennis Space Center,
problems occurred with data storage, data loss, and sche-
duling. This reinforces observations that these problems
will likely occur with any system of data collection until
routines and methods are established that safeguard
against mishaps.

Remote sensing holds great promise in reducing in situ
visits for forest competition assessment. It is anticipated
that future access to hyperspectral remote sensors (more
bands for greater discrimination) with finer spatial resolu-
tion than what is currently commercially available will open
the way to widespread use of remote sensing to identify
competitive species in tree plantations.
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