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Agroforcsrn', the dclibcr.rte inregratkrn of trecs into agricrrltLrrll
oper.rtions, sequesrers c.r|bon (C) while providing valu.rblc
scrvices on agricultur;rl lands. Howcwcr, nrethrxls to qu.rnti6,
pfesenr rnd projectcd O stocks in rhese opcn-grown woodv
svstems arc Iirrited. As an initialstep ro address O.rccounting in
agroforesrrv s1,stems. a sparial Markov randorrt 6cld model f<x

prcdicting rhc natural krg.rrirhm (Lrg) ofthe mcrn aboveground
volumc of green xh (lroxinus pennyluazr'ca M.rrsh.) within .t

shcltcrbck, referrcd to .rs the log of,rbovcground volumc, was

dcvcloped using data lrom an earlicr stuclv and web-lvail.rble
soil and clinrate infbrnrrrrion. Vindbreak chlrlcrerisrict, sitc,
rnd clinrarc variablcs wcrc 

"sed 
to nrodel thc l.rrge-scale rrcnd

o[ thc Iog of rbovcgrtxLrrcl volume. 'Ihc rcsidLr.rls from this
inirial mrxlcl were corrcl.ued among sires up ro 24 km fronr a

point ofintcresr. Thercf<xe, a spatial dcpendencc prrametcr w.rs

used to incorporarc infrrrmation from sites within 24 km inro
thc prediction ofdre log ofthe .rbovcground volumc. Age is an

importart windbreak clrrrracteristic in rhc model.'ftus, the log
of abovegrou nd volumc can be predictcd for a given windbrcak
,rgc and for ralucs of orhe. explrrnrtory vari.rblcs associ.rrcd

wilh a sirc of iftercst. Such prcclictions can bc cxponcntirtecl
ro obtain prcdictions of aLnvcground volumc fbr windbrc.rks
rvithout rcpc'.rted invcnrorv Iifirh rhc capabilitv ofqu:urtifuing
unccrtaino'. rhc model har rh€ porcntial fbr'largc region,rl

planning effirns and C srock assessnrcnrs for nrrny dcciduous
tree specics used in windbreJrs rnd ripari.rn bullirs once it is

c.rlibrated.

I cnororusrnv. rhc delibcrare inregrarion ofrr<rs inro crup ;rrd

-fliu.rrnck opstulion5, \(ques(crs \uh\Lrn(ial lrrlounts of carbun
(C) on agriculrural lands while providing the producrion and con-
scrvation services for which ir was designed (Korn er al., 2003; Nair
er al., 2009; Schoenebelger, 2009;Verchor et al., 2007). Thc Global
Rcscarch Alliance on Agricultural Greenhouse Cases, cstablished at

the 2009 climate change mcctings in Copenhagen (hrtp://www.

globalresearchalliarce.org/home,aspx), explicitly includes agrofor-

esrry as a viable C sequesrering oprion for agricultural operarions.

Of the five main agroftrresrry practices uscd in the Unired Stares

(windbreaks, riparian buffers, alley cropping, silvopasrure, and

foresr farming), windbleak are especinlly appealing as a C sequ€s-

rering optiorr on private lands- Vindbreaks, also referred ro as shel-

tcrbelts, arc linear planrings consisting of trees and shrubs. 
-Ihey

are used thrclughout the United States to protect and improve crop
yiclds, reduce wind erosion, manage snoq reduce energy consump-
tion by homesreads and other buildings, and protect livcstock. ln so

doing, rhey provide addirional wildlife habirar in areas dominated
by agriculture as well as other benelits afforded by the altered micro-
climate and landscape structure created by the plantings (Brandlc

c( al.,2009). Ahhough a small porrion (abour 2 to 5olo) ofan agri-

culturai ficld is dedicated to the windbreak. rhis srnall amount of
land is able to sequesrer grearer amounts of C per unit lald area

than many of the other agricultural options, thereby coorributing
signilicantiy ro overall greenhouse gas mitigarion within a larming
operarion (Schoeneberger, 2009; USEPA, 2006). Furthermore, the

very purpose lor windbreak plantings the use of percnnials and
the additional services rhey providc to the landowner-adds a levcl

ofpermanence not necessarily present in other prac(iccs.

Being able to es[imate current and futurc amounts of biomass

and C sequestered in agrolorestry plantings, such as windbreaks,
provides a basis for directing conscrvation programs and policy
devclopment as well as future land management decisions by
landowners. Initial esrimares made for windbreaks in rhe north-
cenrral United States (USDA NAC, 2001) and for riparian buf-
fers, woody plantings in the unfarmed corners of center pivot
6elds, and living snow fences in Nebraska (Nebraska Departmenr
of Natural Resources, 2001) indicate that agroforesrry has tre-
mcndous porential as a C sequcstering oprion fbr these areas.

However, more reliable means for generating lhese esrimares are
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needed as cosr-share {nd C credit progra[rs are argued and lor-
nulared and as modcling efforts are dcveloped for C account-
ln€! ln agroecosysrems.

I-ike a fbrest stand, windbreak growrh is a funcrion of site

qu. iry artd t linr;re <r'rrditions .t *ell .* spccics gerrslics. c.,m

posirion, iurangement, and age. Site quality and climate con-

ditions clrange fiom location to k)cation. Even wirhin a singie

windbreak, site t1ualiry may vary dramaricrlly depending on thc
microtopographical condirions. Spccies characteristi<r, as influ-
enccd by dre sccd source Qienetic potential) and ervitonm€ntal
condirions, are also quite variable, reflecting the variery of plant

matcrials generally used in conservation plantings ancl ihe wide
range o1-settings irrro rvhich rhey arc planted (CLurningham,

1988). (irnsiderable cflbrt has bccn maclc tc, dcvelc,p mcthods to
esrimarc rhe si(c qualiry ofindividual lorcst stalds so their future

growth aud developmcnr can be esrimared (Alerndag, 1991 ). fwo
principlc approaches have bcerr uscd firr this purposc. Thc eco-

logical approach classifies site quality based on plalt communities
because plant associarions rcflect both climatic and topographic
lactors rhrt contributc ro a st,rnd's growth poienrial. Such clNsifi-
carions are largely dcrcriptive, dillicuh rt) quantily, ard predomi-
lantly uscd fbr broad classification arrd comparisons across large

geographical scales. The olher approach uses sirc index as a com-
prchensive indicaror o{ sitc qualiry ancl is thc most commonly
uscd mcthod lor estirnatingsite qualiry in North Americen li)rests

(Carmean er al., 1989). Sirc indcx refcrs to thc predictcd height

ofthe dominalr and codonrinanr trees of a stald ar an indcx age

(usLrally 50 yr lor hardwood spccies). This approach treats site

condition as a single variable with additive ellecrs and models

height growth as a nonlincar iunction of age. 
-lheoretically, 

each

sire should havc a uniquc site index, and attrupt, rathcr thal)

snroorh, changcs should be cxpectcd fiour site to sire. The nonlin-
ear funcrional relationship ber*een height and age providcs *re
basis ro fbrecast lrrrure growth through extrapolation.

Despite grcar effrrrt, espccially in conrmercial foresc produc-
rion sysrcrns (Alendag, l99l ), it is impmctical ro develop a site

index fbr each srancl. ln many cases, the estimation ofsite index
remains impossible due ro the hck ol-a wurdy pllntation for
mcasuremcnr. Approximations and assurnpti()ns musr therefore

tre made to nrahc usc of index ctrrves frrr othcr sircs with simi-
lar sire conditions. Becausc site index is a function of agc and

rhc average hcight ol rhe dominunt and codominant rrecs in a

s(irnd, ar leasr olre Dcasurcrnent ofage and hcight rnust be nrade

ro esrimare sitc index. Conseclucntly, site indices lor projected
planrinlis on reclainred, agriculrural, or pasrure sircs are rarely

availablc, and predictions Ibr ftrture growth based on site index
a( porential windbreak sites are cssentially impossible.

Thc objecrive of this work is to develop a spatial model of
the natural logarithnr ofthc mean abc,r.eground volume oftrees
within a windbreak thar provides spatial predicrion at any point
within Nebraska. 

-lir 
do this, we proposc using a spatial Markov

randon field rnodel that uses wcb-availablc data. This apploach
differs liom the tradirional lorestry practice in rhat the discretc

qualitarive site classilication is replaced with a conriouous linear

prcdicror based on a serics of cluantitative and qualitative soil

and clirnate variables (Lundergren and Dolid, 1970). $fith a

Markov random 6eld rnodel, the spatial variation in the natu-
ral logaridrm of thc rnean aboveground volume of trees within
a windbreak is attributed !o two sources: (i) large-scale varia-

tion or trend across the region and (ii) smali-scale variarion due

to correlation among nearby sires. The linear predictor can be

used to capture thc rrend ofnatural logarithrn ofthe winclbreal<

mean aboveground volume (thc response variable) over space,

with soil, climate, antl windtrreak-relatcd paramerers serving as

the predictor variables. Thc spari,rl depcndeflce parameter quan-

ti6es the corrclarion among sites as a function of rhcir distance

from cach t-,ther, thereby capturing the small-scalc corrclarion
among neighlroring locations, fhe Markov rlndom 6eld nrodel

approach is inclependent of sire index and ,rllows the user to
combine data over a geographical area of intcrest, providing spa-

ti. prcdictiott.,r extsring attd :r ttcw l,'carintt..

Materials and Methods

Data Sources and Description
'lhe prirnary focus oi rhis study was on developing a modcl to
predict the log of aboveground volume of pireen trsh (Fraxinus

pennsylwtnictt Marslr.) windbreaks as a firsr stcp fbr getting esti-

rnates of aboveliround voluore :rnd then ultimatcly for rrse in
estimaring potcntialwoody biomass and C in furule plantings.
The woody component in thesc allorestarion-like practices rep-

resenrs thc dominant component of C sequestercd, with thc
ll-nvegrounc{ portion gcnerally reprcsenting the rnajority of
ncw (l scquestcred in thesc sysrcms (Nui and Duicker, 2006) as

well as being used to estinlate roots irl forestry projecrs (Brown,

2002). Such a modcl could begin to providc cstimatcs ofagro-
lblestry's currenr and futtrre contribLrtions fbr rcportirg ancl

nranagement planning purposes. The model could be applied
rr any site within the rcscarcb urea |rr which soil and climatc
clata arc available. 'The clara uscd in rlris srudy were obtained
fiom rhree differenr sourccs ancl are described beltw.

Windbreak Data

(lreer ash windbrcak data werc obtained lrom rhe Windbreak
Sire Standard Plot l{eports (USDA NRCS,2002a), which havc

rvindbrcak characreristics (age, spccies cofirposition, health concli-

rion, and site av€ragc height ald diamerer at bre:st hcight IDBH])
Iirr each sitc. In adclition, site coordinares (Tbwnship, Rmge, a-ncl

Section), soil rypes wirhin rhewindbreak, arrd annual precipirariotr
liom the nearesr wcather starion are listcd. To cstimatc wirhin-sirc
v:rriation, individu:rl tree hcight and DBH wcre entcred inro t
supplemental datab,tse. Exploratory data analyses wcre conducted.

Although potential outliers were idenri{ied, mr observaciorts were

excludcd unlcss dre rccord indicatcd rhc tree was dcad, phvsically

damagcd, replalred, or a spror.rt so thlr the lirll variation within
and among windbrcaks could lrc captured. Unlike a fbrest inven-

rory ofthe USDA Forest Scrvicc Inventory alcl Analysis Program

(FL{), the Vindbrc.rk Site Standard Plor Reporrs were nor

clesigncd to nteasure and monitor the total :rboveground volume

pcr unit area. No undergro*th and shrubs wcre nrcasured, and

thc siz-e ofeach sarnple plot was rxrt necessarily unifixm (?ble l).
Er.h wiodbrcak was.ampled.rt,'oly orre puirrr in tirrre.

Of the najor tree specics lisrcd in rhc Nebraska srandard rcporr
(c.g., grccn ash, cottotrwood. [Populu sp.], eln [Ulwa puniLtL.l,
castern red cedat l/unipenu uirginiana L.], and ponderosa pinc

lPinus pon*tosaDotgl. Ex Laws.]), only green ash and easrern red

cedar were dominant ard present at most sites. We sclected green

ash for rhis study because it was widely used in many agroforestry

Hou et al.: Estimating Carbon Slocks inWindbreaks



ard co[scrvarion plantings throughoul the Grear Plains region.
(Since our study, the spread of rhe emerald ash borer [Agriltu ph-
xipennis Fairmai.rel into the Midwest ald roward the Grear Plails
hes begun to threaren the survival ofthis species, and it is no longer
recommended as a key conservarion trce.) Addirionally, green ash

was selecred because we have a model relacing the log of abovcg,
round volume to height and DBH developed frorn field wind-
brcak measurements (Zhou er al., 2002). 'Ilis model reilects rhe
more open-grown rree fbrm attained in windbreaLs, as opposed ro
the generally availabie models dweLopcd 6om loresr stands (Smirh
ct a1.,2004). Of the 235 windbreaks surveyed in Nebraska, g6

contained green e.rh as a major componenr, ard rhese windbreaks
were selecced lor this srudy (Tlble I). Cireen ash is narive ro a

large region ofnonh-celtral Unired Statcs, is sensirive to site arrd
climare variarion, and is subject to large within,stand differentia-
rion duc to internal compctirion for lighr and nuuients (Kennedy,
1990). These factors lead ro l:rge within- and berween-site var.ia,

tion, making esrimarion ofthe spatial dependence srrucure espe-

cially challeoging. Table 2 Lists the variables io the windbreak data
used in our model. Among these variables was rhe windbreak
growrh condition code (Cocode), which used G, E I and D for
good, fair, poor and cleterioraring growing sratus ofthe windbrerk
as a resulr ofmainrenance aild management. For sparial modeling,
we recoded G, F, P or D as I, 2, 3, and 4, respectively, considering
the ordinai nature of rhe original survey classiiications. Based on
lhe assumption chat thc distalce berwecn consecurive condition
codes is the samc, this va-riablewas entered as a conrinuous variable
in the rnodel.

Soil Data

Nebraska soil dara were dorvnloaded lrorn the USDA Natural
Resources Conservation Service State Soil Geographic

Table 1. Eackground information onwindbreaksites used in this study.

(S IAISGO) database maintained by rhe Nebraska Deparrmenr
ofNacural Resources (State Soil (ieographic ISTAISGOI darabasc

fbr Ncbraska). Designed lbr regioml, dver-basin resource plan-
dng and manatjement, STAISGO core data are available for map
units, which :Lre polygons ofvarious shapes and sizes. Depending
on thc region, rhese map ullits average liom 7000 to 60,000 acres

in size; rhe minimum size is 1544 acres (USDASCS, 1991).
Each STATSGO nrap unir lnay have up ro 2l soil rypcs.

l-lowever, the location ofrhe speci{ic individual soil rypes within
each map unit is nor given. lnsread, the proportion of the map
unit\ area covered by each soil rypc is provided. In addition, each

map unit has a set ofarrribute tables cottaining 60 soil proper-
ties that include physical, cherniel, biological, ta-.<onomic, and
geographical characrerisrics of each soil type wirhil that unit.
These attribure tables are connected to map units rhroLlgh a ser

of idenrifier valiables. ALI atrribure rables were merged to fbrm
one SAS data set (SAS Instirute, 1990). A list ofthe soil variables
included in our nodel is given in Table 3.

tlimate Data

Climate data lor rhe windbreak sires were obtained lrom the High
Plains Regional Clinare Celter website (High Plaios Regional
Climate Cenrer, 2002). 'Ihis siLe has short-rerm wearher rccords
and long-time climare measurements from 125 weathcr starions
throughorrt Nebraska. Climare variables include monthly precipi-
tation; temperarurc; and heating, cooling, :rnd growing-degree,
days. AIso available lrom rhis dara source:ue monrl]ly aDd annual
oreans of the Palmer Drought Severiry Index (PDSI) for each

weather station. lTidely used {s an inclicaror of regional drought
conditions, rhe PDSI provides an esrimare of the accunulated
cffect ofrnonthly rainhJl deficit or surplus relative to thc monrhly
climarologiolly'appropriate" rainfall, deEned as precipitation

Table 2. Windbreak variables from the windbreak survey data.

Description
County Year

established
No. of
trees

No. of
5ttes Age windbreak age at time of survey

Antelope

Blaine

Box Butte

Chase

Custer

Dundy

Fran k ln

Gauge

Hitchcock

HOtt

Lancaster

Lancaster

Madison

Morrill

Seward

Sheridan

Stanton

Thurston

Total(16)

1967

1963

1965

1961

1959

1967

196s

1980
't964

1961

r983

1965

1989

I960

r965

1984

1967

1960

1963

1964

1964

1965

1)

12

12

12

254

12

60

14

60

242

t6
24

249

l
21

30

125

14

24

30

4l
1280

Btwnfow

Nelghbor

Cocode

l
I

I

I

t6
I

5

1

5

12

I

l

2

15

2

l

12

I

5

96

DBH tree diameter at breast height

Ht tree height at time of survey

windbreak within row spacing (tree spacing)

windbreak between-row spacing (row spacing)

nelghbor row species

row position {interior or side)

windbfeakqrowth condition code (1,2,3, or4)
Volume logofabovegroundvolume(stem,branches,leaves)

Table 3. Soilproperties included in thetree modeland site mean model.

Description

Group

Oml

Shrinl

alay2

PHl

Perm'l

Text2

Sdep

Ltq

Cec2

Kfactor

windbreak suitability group

first layer organic matter content

second layer soil shrinkage

5econd-layer clay content

soil wlnd erodibility index

6rst- ayer soil reaction

first layer soil permeability

second layer soil textu re

soil depth ofthe first and second layers

soil available water content

second layer cation exchange capacity
soil erodibility factor
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n€.eded to naintain adequarc soil water conlent for normal plant

growth in a particuler rc€iou (Qi and Villson, 2000). Thc PDSI

is a scaled valuc with :r mean ofzcro. Negative valucs represenr

insuflicicnt moisture, and positive values indicatc at ieut adequate

moisrure. To better reflecr climare impac on rhe multi-<lccade-

long growth of rrees in windbrcaks, wc calculated the number
of months duritrg each growing scason (March-August) over a

30-yr period (1961 1990) fbLwhich the PDSI indicrted droughr
based on records lrorn each weather srari()n. ln this strrdy, wc have

defined drought lor trees rs u PDSI of lcss than 2. Selecrion of
2 as a criticd value is bxsed on dre assunrption rhat woody plarts

arc relativcly tolcranr () modcrare drought conditions due ro their
decp roor snstem and that tree growth is morc likely to suffcr wirh
increa-ses in both intensiry ald fiequency ofdroughr periods. Ihis
measurement ofdrought was uscd as aIl independent variable for

thc spatial prediction of volume ar each windbrcrk point. Table 4

provides a lisr of thc climate variables included in thc modcl.

[ombining Wndbreak with S0il and (limate Data

Thc windbreak, soil, aid climarc dara used in rhis srudy:rre spa-

rially misr igned (Gorway arrd Vrurrg, 2002); rhar is, thcy havc

been collccred on di{lerent observational unirs. The winclbreak

informarion was obserwcd at thc windbre:rh sires, which arc points

on a map. Thc soil data are rccordccl on polygons. The climatc dara

are rccordcd at weadrcr s(ati(xrs, which arc also poinrs on a map

bur different fmm those ofthe windbrcaks. Thc first ctrallenge was

to crrrubine all o{ the clata at tlre windbrurk sirc lwel (see Fig. l).
'lo combine the soil and windbrcak dara, the coorclinates

fbr rhe windbrcak sitcs explcssed in rerrns of'lbwnship, Rangc,

and Section (LJSDA NRCS, 2002a) were converred inro lari-
tude and longitudc. Thel, thc windtrreak dara poinrs lvere

ovcrlaid onto thc STATSCO soil nap, and ir unique map unit
was identified lc,r each sarnpling poinr usilg ArcMap\ spatial
join funcrion (ESRI, 2001; Statc Soil Geographic [STA'I-SC]Ol
dat'r base for Nebraske). If the rnap unir conrained the spe-

cilic type of soiL identified in the windbreak data set, all attri-
burcs lor thar soil rype from ST,\1 SC;O arrributc rables werc

assigncd ro the windbreak data ponrt (Fig. 2).

An exacr mirtch occurrcd for only about half thc winclbreak

points, possibly because of diffcrenccs in sampling scales or
changes in terninology in soil tuononty. Ifttonc ol rhe soil qpcs
in u map unit matched those identificd in the windbreak data

se(, thc weighrcd meln values from STAfSGO atrributc tables

for all soil rypes in thc corrcsponding map unit werc assigned ro
thc corrcsponding windbrerk data point, where the wcight for
a soil rypc was thc proponion o1'that soil type in the map unir.

Table 4. Climate variables included in the weather data used in devel-
oping the tree model.

Description

Conscquently, fbr cach windbreak sampling poinr, wc obrained
a complete sct ofsoil specific artribrrres. However, the quality of
the atrribures cliffered depending on wherhcr rhe windbreal< soil

rypc matchcd onc of rhe soils in the associated STATSGO map
unit. '[tis dispariry in qualiry was nor considerecl lurrher

Bccause windbreaks grow fbr ycars, long-rcrm clinare, as

opposed to shor!-(errn wearhcr condirions, was (houghr !o be

rnore rclevant to overall biomass accumulation. We calculated

.t0-yr.tr.raFsr I I ()() I r,) - l tt0 I l'or pr<. ipirar ir'rr: mc,rn. m.rxi.

mum, and nrinimum tcmperatures; cooling and hearing degree

clays; and PDSI fbr cach wcather starion. Alrhough rhe 125

weathcr stalions rvere roughly unilbrmly distritrured over the
s( ate (Fig. I ), their spar ial coordin:rrcs in lltit ude and Iongirude
did not match those of the winclbreak sampling proints. We
obraincd thc spati:rl prcdictions il rhe long,rerm clirnate attri-
butcs at each winclbreak sampling point using inversc disrlnce
weighting (Cressie, 1993), which assigns rvcighr ro nearby sra-

tions according to (heir proximiry ro rhe rarger poinr (i.e., rhe

closel the station, the greatcr irs wcighred valuc). Finally, the
predicted values fbr all clirnare variables were nrcrged rvirh the
windbreak-STATSGO daca for spatial rnodeling.

Spatial Markov Random Field Model

Historically, multiple regression models have been developed fbr
predicting quanrities ofintercsr (Searle, 197i; Nercr ct al,, 1996;

Drapcr ard Harry 19911). Here, drc narural lopprirhm of the
abovcgrouncl volurne is ro bc predictcd from porential explanarory
v:uiables (f-rom soil, windbreak, and climlric dlta). A regression

modcl can account lor l:uge-scale trcnds over a rcgion. Howcver,
it is difficult, ifnor impossiblc, to idcntiiy rll cxplanatory variables

that rre influential in prcdicring rhc log o1-aboveground volume.
Because thcv tend to valy ovcr space ard are orDitted fuonr rhe

rnodeling process, spatial depcndencics arn<)ng rhc errors are olien
pres€nt. Furthern()re, bccause sites close togethcr rend rc be nlore
:rlike than sites lirther apart, using nearby sites to infbrm prcdic,
tions can nake thcm rnore prccise. Ihus, in the nrodcling process,

we accourrt f<-,r large-scale rrcnds and borrow infbrmarion tiom
nearby sircs ro c1[n ure small-scale trcncls. This leacls ro a correlatcd,
.urd rt,rt .rrt irrdcpcrrdenl. (rror \rrucrrrr(.

'We hyprxhesizcd thit a measurc of windbreak rrce gro\rrh
(the rrarurll logarithm of abovegroLrnd vohrme), Z(s,), for a site

locared ar s, is sprttially correlated with drc samc winclbreal< tree

growth rnqrsure al all sites within a certain rairge of dre one of
intercst. (Although the aboveground volunre is of inrercst, its dis,
triburion is highly skewed. 11rus, the narural logaithrn, relcrred
to herc as rhe log, ofaboveground trcc r.olumc is rnodcled so thar

thc assumption of normaLiryis more nearly mer. lhe abovegroLrnd

tree volume c:n rhcn bc obtained lrv exponenriarion.) This spariel

depcnclcncc cal be quanri6ed by fining a sparial Markov random
field model (Cressie ard Lele, 1992). For a sirc r, N, rcpresents

a neighborhood with a set ol- sampled windbreals wirhin some

disrarcc lrom sire l, bur not including sirc r. 'Ihus,

lz(s,): i d N;,{N,:i-1,2,...,21

where z is rhe nurnber ofsires lor which predicrions arc required.
In rhe simplc lincar rcgressiol ofa rcsponseT on an cxplanatory
variable x, it is assumed thar rhere is a popularion ofy'.s and each

r and that popularion has a mean, which is linearly relared ro

PDSI2
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x, and a valiance, which is often assurrco ro oe

the same for all ri. A similar assumprion is nade
in sparial raldom processes. Here a conceptual
population of possiblc log,rranslormed aboveg,
rouod volLrmes is assumed fbr cach rvindbrcak. A
paficular rca]ization of rhese volurncs has been
observecl at each sitc, and drar realization reflccts
arty inherent spatial depelclcnce arnong sites. Ler
p,, and o,l bc the mean and varlancc of rhe log of
abovcground volume ar sile l. Srrppose that rhe
rnean varies over space so rhat p, = (t-r,,..., p,,) ..p-
rures this larg€ scalc variarion. Further, de{lne M
= Diag (o,',..., o,,r) to bc a diagonal marrix of
fhe urrl rown site var-iances ancl C = {r, i to be a
natrix drar caprur€s thc small-scale dependencc
among sites. I Ierc, the small-scalc dependerrce is

assumed to be 0 if a sitc is nor in thc rrcrgnoor-
hood (r,, = 0 if j e N,) and to dccrease wirh distance between rhe
r.vindbrcaks whcn a sirc is in the ncighborhoocl G , = q f(1,,), il
7 e N, rvhere / is a iuncrion ofdisrance bctween's, and s,). Let
I be an z " zr identity marrix and C = {c i be a spetial clcpen,
dcnce matrix. Assuming the auro-Grussian modcl (xn autorc-
gressivc nrodel with Gaussian (normaily) distributed responses)

and Lrnder cerrain condirions (Cressie, 1993; Grillith, 2003), thc
log of the aboveground volLrmc at sites sr, sJ, ..., s,,, nanely the
spatial random processZ = lZ(s,). Z(t,),...,2(,,)l/ is norrnallydis-
rrihrrrcd r.L \p1.cndix tLr der;r s'. lhrr i.

z - Nlp(I c) ' Ml ttl
lor thc combined windbreak clara, rhe largc,scale variation is
assumed ro be a linear flnction of rhe cxplanatory site and
climate variables; rhar is,

p=x13

where rhe design rnarrix X includes all potcndal quanrirarive
artd qualiratlvc predicror variables rangiDg frorn windlrrcal< atrri
butes, soil rncasurements, and long-rcrm climarc data, and 13 is
a vector of coeilicients (Searle, l97l). The qualitative variablcs
entef thc model through indicaror variables (Neter er al., 1996;
Drapcr and Harrl l99li). \(/c assume rtrar all ellicrs on the
log of aboveground volunrc by predicror variables are addirivc
because soil, climare, ancl rvindbreak characreristics rend ro havc
linear cffccts on sitc, as indicatcd in rhe various site index cur-ves
lbuncl in rhe lorcstry litera r urc (;\lendag, 199 l; Sandcr, L 971 ).

The spati:r1 dependelcc matrix C in L,q. lll can be modeled
as a firirction of disrancc between windbreaks. In this srudy, a

semivariogram rvas used ro quanrii/ rhe sparial dependencc. Th€
cmpirical semivariograrn is a ftlncrion of distance :urcl estimates
h;:lf thc variation arnong pairs ofpoints a specified disrancc (lag)

apafi. Because rhe empirical semivariogrun is cornprised of a

series of estimates (one cstinare lor cach lag), it generally clocs
nof appca-r ro be smoorh, just as data do nor all lie on rhc line
in a linear regression. To obtain a smooth lirnction of the rela-
tionship bctween dre scmivariografir and disrancc, so rhar thc
semivariogram can bc esrimated for distances fbl which no pairs
were otrservcd, various scmi\.uiofjrafir mode]s, such as sphericrl,
exponcnd.l, and power semivariogram modcls, ar€ Lrsed (Cressie,

1993). For windbreaks in Nebnska, the rangc (R) of spatial

Fig. l. Spatial distributions of green ash windbreak 5ampling points (dots), weather sta-
tions (flags), and State Soil Geographic database map units (polygons).

dependcnce musr fir$ be estimared. \(/e 6red a semivaliograrn
nrodel ro the rcsidual fiom rhe regression rnodel in Eq. [2] rurd
rhen uscd the estimated rangc ofcorrelation from lhc senivario-
gram model to identify thc neighborhoods ofrhc Markov random
field. 'lhar is, a spatial depenclence is assumed to exist only within
a distancc,Q"ofa givel poinr, and allwindbrerls qithin R"ofrhe
point le in irs ncighborhrlocl. C)bservarions frorn windbreaks {irr,
ther than 1?*apart arc Lrncorrela(cd. lhe valuc ofR* is ulkrou,n
and flusr be eslilrrared (see Appendix lbr clctails). lhcn windbr*rl
.l is in the ncighborhood ofpoinr r (l C N,) if

*,)2 +(y, 1,)2 LR

I2

lvhere the x's andy'.s arc cooldinatcs of samplc locations, and R
represents the estimatccl range ofspatial depcndence.

\7c have a ncighborhood for each sitc, and wc now turn tcr

quantilying (hc sparial dcpcndence within a neighborhood. Iir
do this, dcfineful ) = C1*)/ " lor I e N,. T|cn:

c,t = 2c(.h)d,t" l3l

wherc r, is rhe 4th elernenr ofthe sparial dependencc marrix C,
.p is the spalial dependelcc parilmercr, C14) = rninirnrrm / l :

/ a N,, i = (1,2,...,n), and ,t is a scale paranlcrer tlrrt corrtrlrl.
how rapidly the spatial dependcncc changes with <listance ol-
s€parrtion. (lressic and Chan (l9lt9) showed that the sparial
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depeodence parameter p can be cstimared and restcd using

ma-\imum likelih,-,od merhods (scc Appendix for derails).
'Ilrc predicred log ofaboveground volume at a site includes

a term for largc-scale trend and a rctm rhar accounts for small-
scale variation:

Yr = XB + (*rH)(Y XB)

where H = f,tl,,) = C(k)d,,t.'Ihe lirst rerm, XB, in Eq. [41

accounts lor large-scale variarion rhar conrcs from windbreak

characteristics, such as:rge, specics composi!ion, and thc

arrangemenl of the rrees in rhe windbreak. The second term,
(9H)(Y XB),inEq.[4] acc<.,unts lirr small-scale variltion that

occurs because thc response (rhe log of aboveground volume)

ar sires closer together rend to be more alikc than that at sites

furthcr apart, lcading ro spatiel dcpendencc among responses

from neighboring sites. The variance ofrhe prcdicred log ofthc
volume is estimatcd using Eq. [5J (see Appcndix for details).

Va(Yr) = F-!F/

whcre F = (I -lrH)(X't-rX) rX'E 
' and I = (I -.pH) 'or.

The Markov random Iield model is especially usefirl becausc

irs predictive power ar r given point incrcases as nrore data

within thc sparial neighborhood l'ecome available.

Results and Discussion
Becausc trees within a windbreak varicd considerably in size, thc

distriburion of the aboveground volume of individual trees was

highly skewed. Thus, thc natural logarithrt of individual tree

volunre was rakcn as the rcsponse so rhat thc assumption ofnor-
rnality would bc more nearly mer.1wo separate Markov randonr

6eld models were litted ro the sparially aligncd climatc, soil, ancl

rvindbreak data. The first used the krg ofabovcground volume of
individual rrees !N lhe response variable (individual rrec model),
while the other took thc rverage of che log of individual tree

volumc 6rst and rhen modeled thc rncan log trce volume on each

site (sitc mean model). Ile individual tree variabiliry in the log

ofaboveground volumc on rhe log scale among and within sitcs

was further explolcd through analysis ofvarilnce.'Ihe estimated

within-site variance and between-site variance was 0.36 and

0.26, rcspectively, suggcsting wirhin windbreak variation was

even largcr thau between windbrcaks. All ofthe cxplan:rrory vari-

ables, except ncighbor row specics and row position indicator,

considcred in rhis stucly werc obserucd at thc site levcl and thus

lvere constant firr any given windbreak. As a consequcnce, lo
explan,rtory variable was capable o1'explaining any ofthe tree-t.)-

rree variability within a sitc. The lirrge residrral variance, possibly

due ro severe intern:l conlpetition, indicared that the individual
tree model obscured any spatial depcndencc that mighr exist. As

a result, the sitc mean model was firund to bc more uscful. Thus,

the log of the rnean aboveground volume of all green ash trees

within a windbreak, which we relcr ro as the log of rhe aboveg-

rouncl volumc, is thc locus of our modeling and is cliscussed in

the rest ofthe paper.

Large-Scale Variation

Because of the heavily skewed distribution, we 6ttcd the

Markov random Geld nrodel wirh site mcan volumc of green

ash on the L>g scale as thc response variable using soil, climate,
and windbreak characreristics as cxplanatory varirbles. The

model for large-scale trend in the log of aboveground volume
lor grcen ash windbreaks across Nebraska was estirnated wi(h
multivariare rcgression. Backward ciimination (usingp < 0.0J)
was used to identify rhe most irrportanl cxplanatory variables
(SAS lnstirutc, 1990). lhe resulring linear nrodelwas as fbllows:

llgrt 1. n ,},.,, +.1 x- * 0-r -, fo' , =

wlrere I is an indicator of the windbreak sire,.;r, is the log of
aboveground rree (more specifically, the natural logarithor of
the mcan aboveground tree volume ofall green ash trees wirhin
thc windbrcrk), 'lc,, is rhe natural logarirhm of windbreak agc,

n,, is the 30-yr average surnme! precipitarion ar rhe windbreak
locarion, x., is rhe windbreak growth conditiol code (1, 2, 3.

or 4 for good, lair, poor, or deterioraring, respecrivcly), and:.
represenrs raIldom error, which is assumed to bc independently
and identically disrributed M0, or).

Small-Scale Variation
'Ihc mrximum rangc of spatial dependetrce R was 24 km as

esrimated by scmivariogram analysis wirh the SAS KRIC;E2D
procedure (SAS Institrrte, 2008; Drignci, 2009). Three diflcr-
ent values fbr the scale parametcr (.h = O, 1, 2) rn fd,,) = C(h)

/,, o tu... t"st.d, whcre C'([) = minimurn (d":7 e N,, r = t,
2,...n). Marirnum likclihood mc(hods were usecl to choose

among rhc lhree valrres of ,t. Jhe maximLrrn likelihood cstiorlte
is that valuc of the paramerer that ma-xinrizes rhc likelihood
function, which is thc probabiliry of rhc observed data as a

firnction of rhe paramcter(s). 'lhe logarithm of the likelihood
function is otien rnarhcmarically more rrac(able, and, becausc

maximizing:r function is equivaLent to maximizing the log of
rhar lunction, usuaily rhe log likelihood firnction is rna-rimized

or, cquivalcntly, rhe ncgative of the log-likelihood funcrion is

orinimizcd, to iind rhc maximun likelihood cstimates. BecatLse

rhc rninimun) of thc negativc log-likclihood function (Chap.

2(X)3) lorf = I issmirllerthan l= 0or2= 2 (Fig. Ja), thespa-
tial dependence funcrion /(/,) bascd on the inversc firnction of
disrance between sites ([ = 1) plovided a better fit (haD a powcr
function ([ = 2) or a rrniform lirnction (f = 0) ofdisrancc. For

* = l, rhe log-likelihcxrd changed with rhe spatial dependcnce

parrmeter and reached a maxirnum ar the estimatcd valuc of
0.575, which implicd a posirivc correlation among nciglrbor-
ing windbrcaks. Biologically, rhis result rvas appcrtling becluse

soil and climrtic conditions tcnd ro be sirlilar for sites wirhin
close proxinriry and thus positively corrclated. As a conse-

qr.rence, windbreak growth at sires within close proximiry rends

to be simiiar. Here "close" was cstimatcd ro be within 24 km.
By rhe maximum likelihood ratio rest, thc spaIial dcpendencc

parameter was fbund to be statistically significant (,p = 0 vs. g
* {)) at rhe 50lo level. Based orr an estimared qr of0.575, p was

csrimared as shown in rhe Appendix. Tests for H,,: i3, = 0 (i = 0,

l, 2, 3) werc all significant at the 0.019o level (Table 5).

Prediction of Windbreak Growth
-lhe 

residuals fiom the model (Fig.3b) showed no crend and

were approximately nolmally distributed. A graph of the ple-
dictcd mean volumc fbr each location liom thc model vcrsus

l,4l

ttl
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the observed mean volume at that locarion, both on the

logarithmic scale, is shown in Fig. 3c.

Using the cstimated spatial dependence Parameter, the

model predicted mean site volumes (obtained by exponenri-

ating the predicted values from the model, which are ol the

log scale) in cubic centimeters at age 36 for all sample sites.

A smoothed map of predictions within the target region

is illusrrated io Fig. .1. The predicced mean site volume in
Nebraska incleased from rhe southeast to thc northwest

This is reasonable because eastern Nebraska, with its more

lavorable climatic conditions. is generally more productive

conpared with the \restern panhandle refiion. The uncer-

tainty of the predicrion was cluanLified through the predic-

rion errors (see Appendix for details). These too had to be

back transformed from che log to the original scale using

rhe delta method (Rice, i994), and we refer !o those oD

the original scale as the prediction errors of aboveground

tree volurne. The prediction error of aboveground tree

volune was smallest near the sample sires (Fig. 5) because

more information was available for modeling at these sites

The highest prediction errors of aboveground tree volume

occurred at poinrs firrhest from the sample sitcs. The mod-

el'.s prcdicrive accuracy would improve and prediction errors

would be reduced if additional data become available.

Existing C stock models fbr fbrests arc site and gpe spe-

cific, mostly using periodic inventory data to obtain volume

estimates on a unit arca basis, which ar€ then conYertcd to

biomass with a set of nonlinear volune-to-biomass equa-

tions (Brorvn, 2002; Smith er :1., 2004; Von Mirbach, 2000).

Prediction for furure C stock is based on results frorn forest

sirnularion nodels that project inventory growir, and har-

re.r .rrr rirrberl:nd .h.rrrge' Irorn jurr\c.Jlive in\(nlutie\.
Srnith et al. (2003) provided inventory-based calculations

lor major forest types in the United Srares. However, for

rhe six for€sr rypes in the northern Prairie scates legion that

includes Ncbraska, none ircluded green ash or eastern red

cedar, which are rrvo of the otajor windbreak species, ;:-s the

clominant species. Because trees il agroforestry systems are

not explicidy inventoried within thc FIA program (Perry ec

a1.,2009), recent attempts at estimatinll current or predicting

furure se<luestration of C by these rystems have mainly used

modifications to models developed lor major lorest types.
\iTithour periodic forest inventories, sire index curves can

be a uscful allernative to predicting tree growth, and thus

biomass and C stock for a single srand, or multiple stands

rvith unifbrm or similar site and climare conditions. Its use

for inferences over large geographical regions, however, is

lirnited because many site curves are lacking ald sire and cli-

matic conditions arc variable. This is parricularly true for use

in predicting growth for cstimating C stocks itr current and

porential windbreak locations throughout entire states and

legions as well as for other high C-sequestering agroforestry

pl;nringr. .u.l^ :' ripalian fore.r huller..

(onclusions
'lhe readily available soil and climate ilformacion from online

sources makes it possible to model windbreak growth with quan-

ritative and qualitati..e soii and climate variables in place of site
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Fig. 3. (a) Negative log-likelihood as a function of spatial dependence param-

eter (L,r)and scale parameter(k)forthe site m€an model.The log likelihood
reaches maximum withk= 1 and I = 0.575. (b) Residual distributions for the
gite mean model with spatial dependence parameter p = 0.575 (dots) and
for the individual tree model with independence model with'.p = 0 (circles)
(c) Predicted vs. observed site mean volume on natural log 5cale for the site
mean model{dot)and individualtree model (circle). The linear regression
line for the site mean model{M) is closer to the l:1 reference ljne (N)than
the individualtree model (T).

indiccs. This approach overcomes *re limitations of the stand

method by capruring rhe large-scale trend as a smooth curve over

space rathel than an abrupt change from Location to location

Further, it enables the prcdiction ofwindbreak growth at any

location over an cntire region lepiardless of previous tlee growtlt
information ar that particular location. On the large-scale trend,

we found r,\at the log ofwindbreal< age (7 < 0.001), the 30-yr
aver€e summer precipitation (p < 0.001), and growth condition
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Table 5. Parameter estimates and testfor statistics for site mean model2.

Para mete r estr mate t value

Intercept

Ln (age)

Summer rain

Condition codet

6.903

r.933

0.404

o.441

1.624

0.458

0.062

0.092

4.260

4.227

6.559

-4.799

<0.0001

<0.0001

<0.0001

<0.0001

t Growth condition code is inversely correlated with the natural log of aboveground volume. One degree lower in condition code, from good to fair, for

example, will lead to a drop in !he log of aboveground volume of ] 554 cmr on average (if every other predictor variable remains the same)

.l

!

Fig.4. Smooth mapforthe predicted log oftheaboveground volume (cmr)pertree at sample points (akcles)with thesite mean model(spatial

delendence parameter p = 0.575; scal;parameter k = 1; tree age, 36 yr). At this fixed age, the average volume for a green ash 6eld windbreak

increases from the northwest to southeast in the state ofNebraska.
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(, < 0.001) wer€ the most importalt prcdictors fbr the log of
abovegro,.rnd volume, indicating that climate :nd management

practices play major roles in determining windbreak C yield
within a given rime period. For small-scale variation, the model
estifirated that tire log ofwindbreak aboveground volumes were

positively correlated (p = 0.57i; p < ().05) fbr sires within 24

km ofeach other By capturing rhis spatial dcpcndcnce, the spa-

rial model approach makes ir possible to improve predictions
of (l srocks fbr presenr and firrure windbreaks by incorporat-
ing ilformation lrom ncighboring sites. Because the ma-xirnum

likelihood nethod is used for paramerer escimares and srarisrical

inlerences and all thc input information is readily available, rhis

model provides an alter-native that can be further improved with
updated data sources fcrr grcen ash windbreaks for larger regional

assessflents, as well as lor all major windbreak tree species, with
limired adjusrment.

Iimitations
There are a number o[ ]imications rvith the spatial Markov
random field model. First, we modeled the narural logarirhm of
the silc mean trcc volurnc rather than biomass per unit area like
other lbrest C stock models. Unlike rhe FIA program, repcatcd

measurelncnt of windbrcak yield from permanent sampiing
plots was not available in rhe agrofbresrry intensive Midrvcst
region and is unlikely to be in the ncar future.'Ihe limited rvind-
break standard repofi data we used in this srudy may underes-
rimare the toral C stocks because the orillina1 survcy was nor
designed to measule total biomass per unit area bur rath€r was

a survey of major windbreak rree species with no estiorates of
urrdcntory growth. Ar attempt to convert individua] rree data

to biomass per unit area may induce uncertainry due to varied

species cornposirion, unequal sampLe size, and lack ofunderstory
measurem€nts. Second, quantification of net change over rime
for the same sites was unrealistic because of the lack of repeated

sampling on the same windbreaks. Predicrion lor furure C stocks

based on modeling tree growth as a function of time along with
site, climate, and availablc rnalagemcnt condition may not fully
capture the potcnti:1ly large variation over space, especi.:lly at

sites with ferv sample points in the surroumding area. '11ird, cli-
mate data ard about halfofthe soiis data used lor the wildbrcak
sites in rhis srudy were predicted. Fourth, thc qualiry of the soil

attributes differcd depending on whether the windbr eal< soil rype
matched one ofthe soils in the a,ssociated STATSGO map Lrnit.

This dispadry in qualiry was not considered. Finally, bccausc the

STAfSCIO soil data and the long-time records by High Plains

Regional Clirnate Celter arc quality data sources and rhe pre-

diction process leads to pledictions thar rend to be smoother
than the true responses, the use of these predictcd values in the

modeling process should result in unbiased predictions of the
response ((irlparis et aJ.,2009; Lopiano et al., 2010). Howcvcr,
the errors associated wiLh thc prcdicted vol,.rmes r-eported here

are biased downward bccause the extra valiation a,ssociated with
the predicted soil and climare variabLes was not considered.

\7ith the mefiod developed here, future studies on agrofor-
estry C stocks could benefrt by lbcusing on (i) increasing the
extent and inrensiry ofdara colleciion from the target region, (ii)
using an updated nenuork fol climare measurements, and (iii)
using the more detailed Soil Survey Gcographic Database. All

IAl]

whele ls,: r = 1,2,3,...,n1repfesents a windbrcak spatial loca-

cions. By the Markov propcrtl, the conditional disrritrurion of
a windbreak attribure at a specific location Z(s,) given all other
sanrpling points lZ(s) : j .z l] depends only on a subser of

of these steps would decrease poreotial error associared wirh rhe

geographical inisrnarch from different data sources, rhus improv-
ing thc model Iit and leading to berrer predictions ofC stocks.

Appendix
The spatial model used to fit thc windbreak data is explained in
this Appendix. The noration of Cressie and Chan (1989) and
Clessie (1993) is fbllowed closely.

A windbreak growth variablc can be regarded as a spatial
tandom Process

lZ(s'):i:l,2,...,n)

lZ (s,) : j e N,;i - 1,2,...,41 fA )l

where the N,'.s are a set of neighborhoc,d sample locations
determincd by the distance between point I and I with j ;= i.
By deriving the Haormersley-Clifford theolen, Besag (1974)

showed rhar the joint disrriburion

PrlZ(sr), Z(s2),..., Z(s,,)) tA3l

is derermined by the cc,nditional probabiliry disfriburions

Prfz,lG,:j e N,)l, r= 1,2,... n;j = r,2,...,n lA4l

A Markov random lield is rhe joint probabiliry distribution in
Eq. [,{3] as determined by Eq. fA41 (Cressie and Chan, 1989).
Suppose the density functior ofthe conditional disrriburion in
Eq. [A4J is ofexponenrial lamily fbrm, rhar is, the conditional
density of Eq. [A4] can be denoted by

I'rf 4 l (,z, : j € N, )l : expl A(z, 11t,(2,) i C,(zt) + D,(z rl lA5)

Then a conscqucoce of the Hammerley-Cliflord theorcm is

that, undcr regulariry condirions, rhe auto-Gaussian model is a

spatial model for continuous data and has conditional densities

Pt.l.:,ii ,l e\p '? 1l't2^)'
V2 r. | \r,

lATl

IAB]

where

p", -E\z,l(2,:7 e N,)i :o'/{o, + | c,,z,l

is ofa lincar folm. Here io, : I = 1 ,..., z I arc large-scaje variation
parameters. The {rr:j € N,} are small-scale variarion paramelers
that model spatial dependence. Note thar when c,, = 0 in Eq.

[A6], thc joint independence model results. Furthelmore, r, =

c,. Let r = {) and r, = 0 iij / N,.
Besag (1974) shc,wcd that for the auro-Gaussian case,

h. ,xpr,.ri..,n irr tq. Ar' .rrrd lA-l rru cqrriv.rlerrr ro

Elz,)Gt: j. N,))-tr, +1.,(', u,)and

Yltlz'l(zi: j. N,)): o:
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Further, the conclitional disrriburion of Z(s,) is Grrassian; r =

Thus, the log of the aboveground volumc at sices s,, s,, .. .,

s,,, Z = lZ(s,), Z(s.),...,2(s,,)l' is norm:rlly distributed provided
thar M '(I C) is syrnoctric, positivc de6nitc, and invertible;
rhat ls,

z - NiFr,(I c) lMl
lAej

where p = (11,,...., tt,,)'cilptures the largc-scale variarion; M =

[)iag ro, ...... o ,: I is an ,z<,r idenriry rlrrrix: C Jr I wirh,
=0iljf1 N,; c,t=,?J(dr); and ifI e N,, f, is a firncrion ofdis-
tancc between s and s. Notice rhar C caprures rhe small-scale

spatial tlependence, '
Oonsequcttly, the ncgxtive log-likelihood firr a dara set

from a distribution in Eq. [A9J is

L(p,M,C) (n l2)ln(2r) r-(1/2)l,r l(l C) 'M)
+(r t 2)(z p") M ' (I c)(z p) [Al o]

which can bc minimized wirh respec ro rhe par:lmcrers p,, M,
and (1.

Modeling [arge-5cale Variation

To accoutrt iirr large-scalc variarion in sire and clinate conditions,
the linear predicror (p) is used to capture the rnean rcsponse ar a

givetr site rvith given responscs aI neigfrboring windbrcaks:

tr = X€ [Al l]

In Eq. IA I I l, rhe dcsign rnar rix X includes all significanr quan-
titarive and clualirative predictor variablcs r:rngiug from wind-
break attribures, soil mcastrrcrnenrs, and long-term climate
dara. Wc assurnc that all eflects are addirivc. Sirc productivity
tends to be linear in cFfects ofsoil, climate, ard windbreak chat-
acteristics, as jndicared in the variorrs site index curves founcl in
the fbrestry literarurc (Carmean et al., 1989; Alcrndag, l99l ).

Modeling Small-Scale Variation

The sparial dependcncc matrix C is modelcci as a finction of
thc dislance betwecn windbreaks.'lo clo dris, the rangc (RJ
of spatial dcpendence must first tle dercrmined. The correla-

tion structurc can be approximared by fitting an appropriate
semivariogrlrn model to thc residual fiorn the regression in Eq.

fAl i ]. The range paramerer R* front rhe semivariogram model
identifics rhc neighborhoods ofrhe Markov randoor 6eld.'lhat
is, the sparial dcpenclencc is assumed to exist only within a

distance of R* of a givcn point, ancl all windbrcaks within R*
of the point are in its neighborhood. Vindbreaks further than
1?tapart are indcpendcnt. Thus, windbrcakl is in rhe neighbor-
hood ol-poinr I (j e N,) if

(.r, - rr)2+(y, .t t)t <R [A12]

whcre x ard 7 arc coordinates of sample locarions, and R stands

fbr the estimated range ofspatial dcpendence.

As deGncd in Eq. IA9J, C reprcseuts sparial dependcnce

wirhr,,= 0 ifj( N,, andc, =1rJ(d) ifje N,. ForTc N, deline

f (d,i) - C(k) tt;k fAI3l

wherc C'([) = minimurn ( /,){' ,j G Nt, l=1,'2,...n),a dd,,ists
defined in Iiq. lA12l. Noricc thar * is;r scale pararnerer, con-
rrolling the speed of ch:rnges lor thc spatial dependcncc with
distance of scparation.

Iikelihood Based Fitting ofthe Spatial Model

Cressie and Chan (19U9) showed rhat rhe maxinrum likcli,
hood estimator (M[.E) lbr spatial dependence plmnreter 1r can
be obrained by first assuming g as fixcd and dcrernrining rhe

MLEs ofB and oi as

0(e) - (x'(r H)x) ' x' (r - rH)Y

"''; =Y,l Hr l- X,X rl H' 'X' rX'l X,Y r Al;l

where tlre yrh cleme nt of H n f @,,) = (:(k) /, r, and r11 orhcr
ternl\ rrr r\ dcGned rerlirr.

Substituring Eq. [Al4] and [A15] back inro Eq. [AI0l, r]re

MLE fbr p can be obtainecl as

, '. ,, 1 ''s-'rt a' t4t zt||t-t \ t)tt lt ttl ltLt|tn.l
,.I

+(, / 2)lD(o'](p)) (1/2)1n(1 9i,)

whcre b, , r = I, 2,..., z are the eigenvalrres ofthc synrrnetric H
matf ix.

The maximum likelihood rario resr sratisric can tre used to
tesr [],]: 'i = 0 vs. II,: I + (]:

G : 2lL(e) 1.(e - o)l - ri tAr 7l

Thc maxinurn likelihood ratio tcsr sr:rrisric can also bc used
(o tcst (he composite hypothcses Fl,,: * $ = 0 vs. H,r l p z- 0
becausc

G -21(n- p-q)lnllLr, Lt.,)-\:t

lAl4l

[\16]

[Ar 8]

where (p+4) and p are numtrrs o1-paramcrers in rhe firll :rncl

reduced models, respecrively.

Spatial Prediction

Tho variance o1-thc MLE ofB cen be estinated by

Vrr(o) = (X'(l H) IX; ro2 
tArgl

Thc prcdicred valuc can be obrained rhrough

Yr - x0 - (,,:H)(Y x0) lA20l

The variancc oftbe predicred value is estimated using

Vrrffr)- P;P' tA2ll

where F-(l-pH)(X t 'X; 'X'> 11 rpH rnd
2: (t 9H)-ror.

In Eq. lA20J, Yr is a vector of predicted me:rn v;rlucs of log
of:rbovegrouncl volume at lr given age and a given ser of loca-
tions; X is a nratrix of predicrrr variables assemblcd lrom thc
climate ald STA1 SGO data sets birsed on krcltions, as well as

pllrrrirtg arrangcmcnts in terrns ul'pacing. .prric. .rrmpo.i-
tion, direcrion, and chc expccrccl hcalrh condirion and survival
ratcs; B ancl Jt are paramclers csrinretecl liom prcvious data; H

Hou et al.: Estimatinq Carbon Stocks in Windbreaks 851



is a matrix whose clements are funcrions of distance betwcen

the rarget locarions and previous sitcs; and Y is dre vector of
observed values for the rcsponse variable fiom thc Previom
data sct. A confidence intelval for the precliction depends on

all estimated parametcrs in the prcdicrion equation, €sPecially

thc large-scale parameters B and spatial dcpendence Parafireter
,p. Accurary of thcsc pararneter cstimates will iDcrease as more

datl become available.
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