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Copulas have become an important analytic tool for characterizing

multivariate distributions and dependence. One is often interested in

simulating data from copula estimates. The process can be analytically

and computationally complex and usually involves steps that are unique

to a given parametric copula. We describe an alternative approach that uses

‘Probability-Proportional-to-Size’ random sampling with weights formed

from the copula likelihood function. The method is flexible and can be

applied to parametric and nonparametric marginal density estimates.

The precision of the simulation can be calibrated by adjusting the density

of themultidimensional grid used in the simulation process. The approach is

fully transparent to any copula function with continuous random variables.

An example evaluates a number of goodness-of-fit criteria and provides

strong support for the validity and practicality of the method.
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I. Introduction

Copulas are an important tool for modelling relation-

ships among (possibly) dependent random variables.

A copula relates marginal distributions for individual

variables in a representation of the joint distribution

function.1 Sklar (1959) showed that, for any continu-

ous p-variate cumulative probability function F, a

unique copula function C(�) exists for which

Fðx1; x2; . . . ; xpÞ ¼ CðF1ðx1Þ; . . . ;FpðxpÞ; xÞ ð1Þ

where Fið�Þ are marginal distributions and x is a set of

parameters that measures dependence. This implies

that the joint density function can be written as

fðx1; x2; . . . ; xpÞ ¼ cðF1ðX1Þ; . . . ;FpðxpÞÞ � �
p
i¼1 fiðxiÞ

ð2Þ

where cð�Þ is given by @Cð�Þ=@x and the fi terms are

marginal density functions. Much of the work on

copulas has been motivated by their applicability to

the issues in risk management, insurance and financial

economics (see, among others, Rodriguez (2003),

Cherubini et al. (2004), Hu (2006), Jondeau and

Rockinger (2006), Patton (2006)).

Copulas are generally used to represent joint prob-

ability distributions. This joint distribution may be

based upon different parametric families for the mar-

ginals. The individual marginals may also be nonpara-

metric and thus represented using empirical

1For details on construction and properties of copulas, see among others, Joe (1997) and Nelsen (2006).
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distribution functions. Upon estimation of the rele-

vant copula function, one is typically interested in

simulating or predicting dependent random variables

from a joint probability distribution. To this end, the

marginal distribution functions and the copula repre-

sentation of the joint likelihood function must be

inverted.

These methods make use of the fact that the inverse

of the Cumulative Distribution Function (CDF) for

any random variable is uniformly distributed. Nelsen

(2006) refers to methods that use this to simulate from

a distribution as the ‘inverse distribution method’.

Making use of the fact that Fÿ1ðxÞ is a uniform ran-

dom variable, u, allows one to generate uniform draws

and plug these draws into the inverse CDF, such that

x ¼ Fÿ1ðuÞ yields a random draw x from Fð�Þ:
Extending this ‘inverse distribution method’ to the

case of two or more random variables becomes more

complex in that the the inverse of the copula density

must be evaluated conditional on values for all other

uniform variates using the inverse copula density func-

tion. For example, consider a case of generating a

single draw from a joint distribution for two random

variables. This is accomplished by first drawing a pair

of uncorrelated uniform distributed random variables

ðu1; u2Þ: The first uniform deviate is used to generate a

random draw for y1 ¼ Fÿ1ðu1Þ: The second random

variable will then be generated conditional on u1 by

plugging the values of u1 and u2 into the copula density

function as follows:

y2 ¼ cÿ1ðu2ju1Þ ð3Þ

Thus, an invertible form of the copula must be readily

available in order to adequately simulate the depen-

dent random variables. Further, the marginals must

be fully specified in a parametric form in order to

simulate the dependent random variables. Bouyé

et al. (2000) describe this general iterative conditioning

approach for simulating correlated random variables

from copula functions.

In some special cases for certain copula functions,

alternative algorithms that offer greater speed and

efficiency can be applied in simulating random vari-

ables from the copulas.Marshall andOlkin (1988) and

Frees and Valdez (1998) note that when the inverse of

the generator function associated with an

Archimedean copula is the Laplace transform of

some other positive random variable from a known

distribution, a simple and direct method of simulation

exists by using simulations from the corresponding

distribution. Kojadinovic and Yan (2010) note that

the corresponding distributions for the Clayton,

Frank and Gumbel copulas are the gamma, log-series

and positively stable distributions, respectively. In

spite of the simplicity and efficiency of this approach,

it is limited by the fact that it only applies to a subset of

Archimedean copulas for which the corresponding

distributions are known.

This note suggests an alternative approach to simu-

lation that may offer advantages in two important

dimensions. First, one can work directly with the

joint likelihood function implied by the copula rather

than the requiring conditional versions of the inverse

of the copula density function. In addition, one can

simulate directly from nonparametric marginals,

thereby allowing simulation of dependent random

variables without requiring one to specify parametric

marginal distributions. The approach essentially uses

values of the joint density function to form likelihood

weights that can then be used in a probability-

weighted sampling scheme to simulate dependent

draws from the nonparametric densities.

The approach uses values of the joint likelihood

function given by Equation 2 to assign a probability

weight associated with any relevant combination of

random variables ðx1; . . . ; xpÞ: Values for the mar-

ginal densities fið�Þ for each observation can either

be evaluated using the relevant parametric family (if

known) or the value of a nonparametric density. The

nonparametric marginals can be estimated using sam-

ple data and then evaluated over a grid that can be

defined (between the maximum and minimum values

of the observed range of data) to be as fine as needed

to obtain a desired level of precision. In case of non-

parametric marginals, the simulation is limited to lie

only within the range of observed data. However, in

case of parametric marginals, the simulation can

encompass the entire domain of the parametric

families. There are a number of methods available

for probability-weighted random sampling (or as it

is equivalently termed, ‘Probability-Proportional-to-

Size’ (PPS) random sampling). We use the methods

for PPS with replacement random sampling that are

described in the classic reference text of Cochran

(1977).

The approach can be summarized as follows. First,

parameters characterizing the marginal distributions

must be estimated. In case of nonparametric margin-

als, kernel density estimation techniques (or equiva-

lent nonparametric density estimation methods) can

be used as an alternative. A multidimensional grid can

then be generated, and for each combination of simu-

lated random variables, the likelihood function given

by Equation 2 can be evaluated. The grid can be made

as dense as desired in order to ensure adequate con-

vergence of the simulation to the copula andmarginals

estimated for the sample data. Note that the exercise,

though simplistic in design, can be computationally
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intensive as the dimension of the copula increases. In

particular, if one generates a grid of size N for a

p-dimensional copula, the likelihood function must

be evaluated Np times. The resulting simulated data

set from which the PPS random sampling will be

applied to can be very large but is manageable given

the current computing capabilities. In higher-

dimension problems, a trade-off between the density

of the grid and the order of the copula may be used to

keep the problem computationally manageable. Once

the p-dimensional grid of observations is generated, a

sample of simulated data points is generated using the

PPS with replacement random sampling methods.

This is the most computationally intensive step of the

procedure. The size of the simulated data set can be

adjusted to fit the requirements of the problem,

thereby reducing computational demands.

II. An Example

A simple example is considered in order to demonstrate

the sampling algorithm. Simulating from highly

skewed or multimodal distributions is more complex
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N = 1000 Bandwidth = 0.3344

Fig. 1. Generated and simulated (using proposed method) data. (a) Generated log-normal (b) Generated Weibull (c) Simulated
log-normal (d) Simulated Weibull
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in that the number of simulated data points needed to

adequately capture thin tail behaviour may be large.

Likewise, the shape of such distributions may be sensi-

tive to parametric estimates of the parameters charac-

terizing the distributions. For example, small variations

in the shape and scale parameter of a log-normal den-

sity may provoke substantial differences in the nature

of the density. We chose a relatively platykurtic two-

dimensional copula model – a t-copula with a depen-

dence parameter (r) of 0.50 and a degrees-of-freedom

parameter (�) of 5.0. We chose a log-normal distribu-

tion with shape and scale parameters of 1.0 and 0.5 for

one marginal, which we term the ‘X’ variable. For the

other ‘Y’ marginal, we chose a skewed Weibull distri-

bution with shape and scale parameters of 5.0 and 150.

We generated a set of 1000 observations, which we refer

to as the ‘generated’ sample by simulating from these

marginals and copulas. This ‘generated’ sample repre-

sents the sample data that one would use to fit a copula

model in an empirical application. We estimated the

copula model for this generated data using standard

maximum likelihoodmethods.We used nonparametric

kernel density estimates to model the marginal densi-

ties, with bandwidth parameters chosen using

Silverman’s rule of thumb.We then applied themethod

described above to generate a simulated sample from

the estimates, which we term the ‘simulated’ sample.2

Figure 1 presents kernel density estimates for the

generated and simulated marginals. We then con-

ducted a number of illustrative and inferential evalua-

tions intended to validate the simulation procedure.

Note that the goal of each step of this evaluation is to

compare the results for the ‘simulated’ data to those

from the ‘generated’ sample of data. To this end,
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Fig. 2. Generated and simulated (using proposed method) QQ-plots. (a) Generated log-normal (b) Generated Weibull (c)
Simulated log-normal (d) Simulated Weibull

2Estimation and inferences were accomplished using the ‘Probability-Proportional-to-Size’ ‘copula’ and ‘CDVine’ packages of
the R language. Details are available in Gambino (2012), Brechman and Schepsmeier (2012) and Kojadinovic and Yan (2010).
Excellent overviews of the R-copula packages and implementation issues are presented by Yan (2007) and Czado (2011).
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estimates of evaluation criteria are presented side-by-

side. In case of the marginals, the estimates are very

similar and indicate that the proposed method pro-

vides an adequate representation of the estimated

densities based upon the generated data set. Figure 2

presents qq-plots of the marginals as compared to the

true parameter values. Note that the log-normal data

show some departures in the right-tail, reflecting the

substantial skewness of the distribution. However, the

important fact is that the plots are very similar for the

generated and simulated data. Thus, the evidence

again supports the validity of the proposed method

for simulating data from a copula.

Figure 3 presents plots of Kendall’s K-statistics,

which is comparable to the qq-plots for a copula

model and contours of the estimated copula functions

for the generated and simulated data. The K-statistics

represent the relatively strong degree of positive

dependence inherent in the copula estimates.3 Again,

the diagrams are very comparable and indicate that

important patterns of dependence are replicated in the

simulated data.

Table 1 presents copula parameter estimates and a

variety of goodness-of-fit statistics and other relevant

criteria that compare results for the generated and

simulated samples. At the top, estimates of the copula

parameters are presented and confirm the similarities of

the multivariate distributions. Summary statistics and

Kolmogorov–Smirnov tests for the marginal distribu-

tions are very similar and confirm the validity of the

method. Note that, by design, the minimum and max-

imum values observed in the data define the span of the

simulated data. This is not guaranteed by the PPS

sampling but is likely to be observed since the grid is

defined by the minimum and maximum values.

Standard measures of correlation are also very similar
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Fig. 3. Kendall’s K–plots and contours for copulas. (a) Generated data (b) Generated data (c) Simulated data (d) Simulated data

3Values above the diagonal correspond to positive dependence. The outer envelope represents perfect correlation.
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for the generated and simulated samples. Finally, the

bootstrapped Cramér-von-Mises and Kolmogorov–

Smirnov goodness-of-fit statistics of Genest et al.

(2009) for the copulas are similar and support the

t-copula specification in both cases.

III. Concluding Remarks

Copulas have become an important analytic tool for

characterizing multivariate distributions and depen-

dence. One is typically interested in simulating data

from copula estimates. The process can be analytically

and computationally complex and usually involves

steps that are unique to a given parametric copula.

We describe an alternative approach that uses PPS

random sampling with weights formed from the

copula likelihood function. The method is flexible

and can be applied to parametric and nonparametric

marginal density estimates. The precision of the simu-

lation can be calibrated by adjusting the density of the

multidimensional grid used in the simulation process.

The approach is fully transparent to any copula

function with continuous random variables. An exam-

ple evaluates a number of goodness-of-fit criteria and

provides strong support for the validity and practical-

ity of the method.
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Table 1. Summary statistics for generated sample and
simulated data

Parameter/statistics Generated Simulated

r Estimate 0.4958 0.5086
r Standard error 0.0253 0.0114
� Estimate 5.6275 4.6871
� Standard error 1.1771 0.3864
Cramér von-Mises p-value 0.90 0.33
Kolmogorov–Smirnov

p-value
0.81 0.13

X-variable (Log-normal)
Kolmogorov–Smirnov

test
0.0402 0.0406

Kolmogorov–Smirnov
test (p-value)

0.3930 0.3834

Minimum 0.62 0.62
1st Quartile 1.94 1.95
Median 2.71 2.81
Mean 3.09 3.20
3rd Quartile 3.76 3.79
Maximum 14.05 14.05
Y-variable (Weibull)
Kolmogorov–Smirnov

test
0.0462 0.0446

Kolmogorov–Smirnov
test (p-value)

0.2359 0.2739

Minimum 31.95 31.95
1st Quartile 115.90 117.00
Median 137.90 138.30
Mean 137.20 138.60
3rd Quartile 159.90 163.40
Maximum 218.00 218.00

Pearson correlation 0.3324 0.3416
Spearman correlation 0.4707 0.4805
Kendall’s Tau 0.4357 0.4486
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