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Abstract

The interactions among insects, mites, and fungi are diverse and complex
but poorly understood in most cases. Associations among insects, mites, and
fungi span an almost incomprehensible array of ecological interactions and
evolutionary histories. Insects and mites often share habitats and resources
and thus interact within communities. Many mites and insects rely on fungi
for nutrients, and fungi benefit from them with regard to spore dispersal,
habitat provision, or nutrient resources. Mites have important impacts on
community dynamics, ecosystem processes, and biodiversity within many
insect-fungus systems. Given that mites are understudied but highly abun-
dant, they likely have bigger, more important, and more widespread impacts
on communities than previously recognized. We describe mutualistic and
antagonistic effects of mites on insect-fungus associations, explore the pro-
cesses that underpin ecological and evolutionary patterns of these multipar-
tite communities, review well-researched examples of the effects of mites on
insect-fungus associations, and discuss approaches for studying mites within
insect-fungus communities.
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INTRODUCTION

Mites play a variety of influential roles in insect-fungus associations. Mite-insect-fungus relation-
ships occur in a wide continuum of forms, from parasitic to mutualistic, as well as from diffuse
to highly coevolved associations between species. These interactions are often complex, context
dependent, and widespread across insect and fungal communities. Mites can be a driving force
of either diversification or stability in different insect-fungus associations, or even in the same
insect-fungus association at different times and in different contexts. Mites can mediate intra- and
interspecific competition and predation and facilitate the associations of fungi with insects. Ex-
amples of insect-fungus communities influenced by mites include, but are not limited to, those of
leafcutter ants, gall-forming insects, bark beetles, wood borers, cockroaches, grain insects, carrion
beetles, bees, wasps, dung beetles, coprophagous flies, and insects that feed on mushrooms, fruit,
and other crops (83, 121, 142).

In this review, we only discuss interactions that encompass all three taxa: mites, insects, and
fungi. We do not cover interactions that only include two of them (i.e., mite-fungus, insect-
mite, or insect-fungus interactions). There have been many reviews of the direct effects of mites
on insects (unrelated to fungal interactions) (58, 111, 125, 129, 142); of the ecology of insect-
fungus interactions (47, 106, 140); and of the role mites play in fungal communities, such as
arbuscular mycorrhizal (78, 119, 127), plant pathogen (88, 89, 111), and soil microbial systems
(110, 119), and in commercial mushroom production (3, 109). They are not discussed here. We
describe mutualistic and antagonistic effects of mites on insect-fungus associations, explore the
processes that underpin ecological and evolutionary patterns of these multipartite communities,
review a sample of the best-understood and well-researched examples of the effects of mites on
insect-fungus associations, and describe approaches for studying mites within insect-fungus com-
munities. There is a great need to investigate experimentally the fitness advantages to each of the
players, to identify the mode of transmission and behavioral repertoires of mites that affect insect-
fungus associations, and to examine phylogenetic or ecological constraints that may affect these
systems.

EVOLUTIONARY INFLUENCE OF MITES ON
INSECT-FUNGUS ASSOCIATIONS

Mites have the potential to alter interactions between insects and fungi and thus influence the
structure, diversity, and robustness of communities. The ecological selection pressures that drive
mite evolution are major contributors to the emergent structure and function of the community.
The selection pressures that favor certain mite-fungus associations are not always compatible with
insect-fungus associations within communities. Antagonistic, commensalistic, and mutualistic be-
haviors of mites have evolved as adaptations of mites within insect or fungal communities. Mites
exploit or compete with conspecifics and heterospecifics for resources, leading to a complex array
of interactions and associations. Individual species evolve in the context of a community, often re-
sulting in coevolution (22, 67, 137). The evolution of mite-insect-fungus communities is dynamic
in that fungi and arthropods can have different mechanisms that drive evolution. For instance, the
frequency of recombination and the phylogenetic breadth of fungi among which genetic materials
can be exchanged are different from those of arthropods. Intragenomic processes in fungi such as
recombination are likely to have the greatest influence on short-term changes in a community,
leading to population adaptation to changing conditions or new metabolic opportunities. Addi-
tional complexities arise owing to the significant difference in developmental rates and generation
times between mites and insects (142).
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Figure 1
Models of interactions between the southern pine beetle, Dendroctonus frontalis (a bark beetle), phoretic mites
of the genus Tarsonemus, and fungi. The fungal interaction includes either (a) the bluestain fungus
Ophiostoma minus, which is not found associated with the bark beetle mycangium and is an antagonist of
D. frontalis, or (b) the mycangial fungus Ceratocystiopsis ranaculosus, which is a mutualist of both D. frontalis
beetles and Tarsonemus mites. Model A represents an indirect negative-feedback complex, and Model B
represents an indirect positive-feedback complex (adapted with permission from References 53 and 54).

ECOLOGICAL INFLUENCE OF MITES ON
INSECT-FUNGUS ASSOCIATIONS

Although there are only about 45,000 described species of mites, mites are hyperdiverse (or megadi-
verse; 141), with current estimates ranging from 500,000 to 1 million species (48). Mites are com-
monly associated with fungi as well as lichen, bacteria, and other microbes (e.g., 141). Mites can
promote insect-mutualistic fungi by increasing fungal transmission, reproduction, and survival
(e.g., 92, 102, 124); by reducing antagonistic fungi via feeding or decreased transmission (e.g.,
112); or by increasing microbes that reduce insect pathogenic fungi. Alternatively, mites can neg-
atively affect insect-mutualistic fungi or disrupt insect-fungus associations through processes such
as exploitative/interference competition, predation, or encouragement of antagonistic fungi (53).
These processes influence ecological and evolutionary patterns in these communities. For exam-
ple, mites can increase fungal species that are poor mutualists of their insect hosts, thus altering
or destabilizing the fungal association of that insect (Figure 1).

MITE DISPERSAL

To be influential in insect-fungus associations, mites must reach the location of the association.
Mites must either be blown by wind or hitchhike on animals to reach distant habitats (6). A mite
that is passively blown by wind is called anemochoric (40, 89, 97, 136); a mite carried by another
animal is called phoretic [termed phoresy by Lesne in 1896 (93); reviewed in 7, 58]. Phoresy is
also known as phoresis, phorecy, and phoresia (115). Phoresy by terrestrial mites typically occurs
via insects (8, 15, 62, 129) and has likely occurred for millions of years (5). Some mites even use
other phoretic mites for dispersal, a method called hyperphoresy (9).
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There can be pronounced dimorphism between the phoretic state, sometimes called either the
phoretomorph (101) or abnormal (58), and the nonphoretic state, sometimes called normal. Mites
in these different states within a single species can differ from each other in behavior, physiology,
and morphology (142). The interaction between the host or carrier and the phoront (phoretic
guest or passenger) is temporary. Mites in the phoretic stage must possess the sensory capabilities
for identifying and locating potential insect hosts, and once potential hosts are found, they must
have the mechanical ability to climb on and attach to the host insect (57). The sensory capabilities
of mites are virtually unknown.

In evolutionary terms, phoresy can be viewed as a transitional or temporal stage in the life
history of a species, between a parasitic and mutualistic state of the phoront to its transporting
host (10, 24, 58). Phoretic dispersal and behavior in arachnids, including mites, has been well
reviewed (136). The fact that most mite species are restricted to particular insect species or genera
implies that adaptations for coexistence with insects require some degree of specificity by mites.
Alternatively, many mites have lost the ability to be phoretic and typically disperse by walking
or by passive movement by wind, water, or plant material (40). Nonphoretic mites are typically
restricted to marine and tidal habitats, soil and litter habitats, or plant material (111). Phoresy by
mites on insects can evolve and influence multitrophic relationships between organisms (9).

EVOLUTION OF SPOROTHECAE IN MITES

Some mite species have evolved special structures called sporothecae (79) to hold and carry fun-
gal spores. Sporothecae have been recorded in species within the heterostigmatic mite families
Siteroptiidae (e.g., 84, 135), Trochometridiidae (88), Tarsonemidae (94, 98), and Scutacaridae (35,
36, 65). Different types of sporothecae (e.g., a pouch on the hysterosoma just behind the fourth pair
of legs in Siteroptes mites or tergite C on lateral sides of Tarsonemus mites; Figure 2) demonstrate
their analogous character, as they have evolved independently at least four times (88, 98).

CASE STUDIES

Mite-Fungus Associations with Bark Beetles

Standing dead wood and live trees attacked by insects and pathogens are home to a variety of
mites that invade alone or in association with wood-inhabiting insects (e.g., >96 mite species
associated with the southern pine beetle, Dendroctonus frontalis Zimmermann) (56, 105). These mite
communities consist of fungivores, herbivores, scavengers, and predators and can have important
effects on the evolution and ecology of wood-infesting insects and their associated microbes. For
instance, some species of mites are capable of altering the frequency of bark beetle mutualistic
fungi (55) or the abundance of antagonistic fungi, which can drastically affect bark beetle behavior
and population growth (53, 55, 92) (Figure 3).

The fungi most commonly associated with bark beetles are ophiostomatoid fungi, which include
the genera Ceratocystis Ellis & Halst., Ceratocystiopsis H.P. Upadhyay & W.B. Kendr., Cornuvesica
C.D. Viljoen, M.J. Wingf. & K. Jacobs, Gondwanamyces G.J. Marais & M.J. Wingf., Grosmannia
Goid., and Ophiostoma Syd. & P. Syd. (74), and related anamorph genera such as Geosmithia Pitt
(66) and Leptographium spp. (64). Ophiostomatoid fungi are important because they are often
associated with tree diseases, and many of these fungi cause blue stain on tree xylem and lumber
(144). Yeasts belonging to the genera Candida, Pichia, Saccharomyces, and Cryptococcus are common
as well (23, 49, 146). Basidiomycetes occasionally occur with bark beetles (146) and belong to the
genera Entomocorticium (77), Gloeocystidium (133), and Heterobasidion (75).

540 Hofstetter · Moser

A
nn

u.
 R

ev
. E

nt
om

ol
. 2

01
4.

59
:5

37
-5

57
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 A

nn
ua

l R
ev

ie
w

s 
on

 0
1/

08
/1

4.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



EN59CH27-Hofstetter ARI 27 November 2013 17:10

Ascospores of
Ophiostoma novo-ulmi

Tarsonemus crassus 

Sporotheca
(C-flap)

Figure 2
Tarsonemus crassus female carrying ascospores of Ophiostoma novo-ulmi in two paired structures under tergite
C, termed sporothecae or C-flaps, that are similar in function to a pocket. Spores may be stuffed in these
pockets. Image courtesy of J.C. Moser.

Mycangia: structures
on the body of an
animal that transports
fungi

Fungi and bark beetles have evolved morphological and behavioral adaptations to maintain the
symbiosis. Several bark beetle species have specialized structures called mycangia or mycetangia
(13, 41) that transport, protect, and/or preserve fungi or fungal spores (130). Likewise, phoretic
mites play an important role in the transmission of ophiostomatoid fungi (19, 53, 77, 92), and
many of the mites associated with these fungi have their own special structures (sporothecae) to
transport fungal spores (98).

Much of our general understanding of mites associated with bark beetles comes from re-
search on the community associated with Dendroctonus frontalis. Many species of mites live within
D. frontalis–infested trees (105), and perhaps half of them are phoretic on D. frontalis adults (87,
105). Several mite species interact with fungi associated with D. frontalis (19, 54, 71, 72, 98). The
presence of a bluestain fungus, Ophiostoma minus (Hedgcock) H. & P. Sydow, in phloem negatively
affects D. frontalis larval growth and survival (18, 21, 43, 92), and the abundance of Tarsonemus mites
positively influences O. minus abundance within trees (53, 91). Thus, Tarsonemus mites appear to
be a meaningful driver in D. frontalis population dynamics by influencing O. minus abundance in
infested trees (53, 55, 91).

Tarsonemus mites (T. ips Lindquist, T. krantzii Smiley and Moser, and T. fusarii Cooreman) as-
sociated with D. frontalis possess sporothecae (19, 94, 105, 131) (Figure 2). In T. ips and T. krantzii,

www.annualreviews.org • Mite-Insect-Fungus Interactions 541

A
nn

u.
 R

ev
. E

nt
om

ol
. 2

01
4.

59
:5

37
-5

57
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 A

nn
ua

l R
ev

ie
w

s 
on

 0
1/

08
/1

4.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



EN59CH27-Hofstetter ARI 27 November 2013 17:10

Dendroctonus
frontalis

Southern
pine beetle

Pinus spp.

Surface of
xylem and/or

phloem

Surface of
xylem and/or

phloem

Tarsonemus
krantzii
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(fungus pocket)

Figure 3
Interactions between the southern pine beetle (Dendroctonus frontalis), fungi, and mites. Graphical model of the transport and
introduction of (a) the bluestain fungus Ophiostoma minus (and Leptographium) or (b) the mycangial fungus Ceratocystiopsis ranaculosus into
trees by D. frontalis and the phoretic mites Tarsonemus krantzii and Tarsonemus ips. O. minus is harmful to D. frontalis, and C. ranaculosus
is beneficial and considered a mutualist. In both situations the mite is capable of transporting the sexual and asexual spores of the fungi.

these sporothecae frequently contain ascospores of O. minus or Ceratocystiopsis ranaculosus Bridges
and Perry (19, 98, 104). C. ranaculosus and Entomocorticium sp. A Hsiau and Harrington are my-
cangial fungal mutualists of the southern pine beetle. Although Entomocorticium sp. A is the more
beneficial of the two mycangial fungi for D. frontalis and may be a key to the success of D. frontalis
larvae (43), neither species of Tarsonemus mites has been found to transport Entomocorticium sp. A.
Thus, in this interaction, the mites play the role of facilitators of a symbiotic relationship between
C. ranaculosus and D. frontalis. By transporting certain fungi to serve as substrate for their own
reproduction and development, Tarsonemus mites indirectly influence the dynamics of the inter-
actions between their bark beetle hosts, the fungi with which they interact, and the tree host that
contains them all. Several mite genera other than Tarsonemus that are associated with Dendroctonus
beetles may be partially or wholly mycetophagous (feeding on fungi); these include Elattoma, Het-
erotarsonemus, Histiogaster, Parawinterschmidtia, Schwiebia, Trichouropoda, and Tyrophagus (73, 105).

Although no relationship has been found between mites associated with D. frontalis and
Entomocorticium sp. A, a relationship that is similarly complex, though perhaps less highly evolved,
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Figure 4
Physogastric females of the mite Elattoma bennetti feeding on symbiotic fungi of the bark beetle Ips avulsus
within the beetle galleries and pupal chambers.

is found between another species of Entomocorticium fungus associated with the bark beetle Ips
avulsus (Eichhoff). As the larvae of I. avulsus develop and eventually pupate, growth of a white,
heavily sporulating fungus becomes obvious. The fungal growth is so abundant that newly formed
pupae are covered with spores (44). Newly emergent beetles graze on the fungal growth on the
pupae (150). Although I. avulsus possesses a gallery system, behavior, and biology similar to that
of D. frontalis, no mycangium has been discovered in I. avulsus (44, 45). Gouger (44) hypoth-
esized that the mutualist Entomocorticium sp. is instead transmitted phoretically by propagules
adhering to the beetle exoskeleton or by the passage of propagules through the intestinal tract.
Interestingly, the mite Elattoma bennetti (Cross & Moser) feeds on the Entomocorticium lining the
galleries of I. avulsus. As the female mites feed, they become physogastric (massively swollen) and
thus more noticeable within the galleries (Figure 4). The female E. bennetti mites continue to
feed and swell, nourishing developing larval mites within their abdomens. The developing lar-
val mites mate while still inside the parent female, who, after prolonged feeding and swelling,
ruptures to give birth to reproductively mature adult mites. These mites are then ready to be
carried phoretically by emerging I. avulsus that disperse. As in the D. frontalis system, there is a
high degree of dependence by a phoretic mite on the symbiotic fungus of its bark beetle host. The
degree to which the mite affects the beetle-fungus relationship is unclear, although the possibility
certainly exists for the mite to vector the fungus (77). The life cycles of all three taxonomi-
cally distinct groups are tightly interwoven and interdependent. The genus Elattoma comprises
many mite species (69), but only the biology of E. bennetti has been well studied in bark beetle
systems.

The fungus Ophiostoma novo-ulmi Brasier (Ascomycota, Ophiostomatales) is the causal agent of
Dutch elm disease, a lethal vascular wilt disease of elm species (Ulmus spp.) in Europe, Asia, and
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Proctolaelaps scolyti

Conidia of
Ophiostoma novo-ulmi

Conidia
leaking

from gut

Staurospore

Figure 5
A Proctolaelaps scolyti mite, phoretic on Scolytus spp. bark beetles, with a bolus of Dutch elm disease fungal conidia (Ophiostoma
novo-ulmi ) leaking from its gut. Inset: A higher magnification of the conidia inside the gut. This large mite possesses mouthparts that
allow it to grasp and carry thousands of spores. Photo by J.C. Moser.

North America (17). In Europe and Asia, the fungus is transmitted by native bark beetles belonging
to the genus Scolytus, and in North America a native bark beetle Hylurgopinus rufipes (Eichhoff) and
the introduced beetle, Scolytus multistriatus (Marsham), serve as vectors of the pathogen (85, 143).
Scolytus scolytus (F.) have been found to carry as many as 10 species of mites in a population (102).
Three mite species, Proctolaelaps scolyti Evans, Tarsonemus crassus (Schaarschmidt), and Elattoma
fraxini, feed on O. novo-ulmi or carry its spores, thus transmitting the fungus into elm trees (102)
(Figures 5–7). Other mites, such as Tyrophagus putrescentiae, consume O. novo-ulmi in elm bark
beetle galleries (16, 32).

Webber & Gibbs (144) found evidence that O. novo-ulmi is detrimental to beetle larval devel-
opment, similar to the effects of O. minus on D. frontalis (53). O. novo-ulmi may be essential for
the nutrition of the mites Proctolaelaps scolyti and Tarsonemus crassus, and it may thus be benefi-
cial for these mites to transmit the fungus on which they rely. Given that these mites transport
O. novo-ulmi, whereas the bark beetles associated with this system may suffer harm from the fun-
gus, the importance of mites in the epidemiology of this destructive vascular wilt disease needs to
be further addressed.

Other species of Elattoma associated with bark beetle fungi occur in Eurasia and thus this in-
teraction may be more widespread than has been documented (69). Similar mites have been found
on Ips typographus (L.) and Tetropium fuscum (F.) on Norway spruce (Picea abies), Xyleborus glabratus
Eichhoff on redbay (Persea borbonia), Agrilus auroguttatus Schaeffer on oaks (Quercus species), and
Phloeosinus spinosus Hopkins on Arizona cypress (Cupressus arizonica) (56), all of which result in even-
tual tree death. Nannelli & Turchetti (108) found evidence that the mite Scheloribates latipes (C.L.
Koch, 1844) can spread chestnut blight, Cryphonectria parasitica, even though no association with
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Figure 6
Graphical model of the transport and introduction of the fungus Ophiostoma novo-ulmi (Dutch elm disease)
into trees by Scolytus spp. bark beetles and by the phoretic mites Tarsonemus crassus and Proctolaelaps scolyti.

bark beetles has been found. However, the ambrosia beetle Xyleborus dispar (F.), which was intro-
duced into the United States, could transport these mites to chestnut trees (Castanea dentata) (145).

Mite-Fungus Associations with Ants

The mite fauna associated with social Hymenoptera is vast and includes obligate and facultative
representatives of all major acarine orders except for the ticks (Ixodida). A number of mite species
have been described from bees (Anthophoridae, Bombidae, Apidae, Halictidae), ants (Formicidae),
and wasps (Vespidae) or their nests (39, 62, 83).

Myrmecophilous mites such as Odontocheles attaphilus Krantz and Moser (Macrochelidae) often
display morphological and/or behavioral adaptations that may have evolved to better protect them
in an ant nest habitat where nonconformity is inimical to survival (82). For example, the series of
tiny teeth on the fixed cheliceral digit of O. attaphilus suggests a scraping function, which in turn
raises the possibility that the mite feeds on fungal spores in the detritus cavities of ant nests (Atta
texana). In fact, spores and mycelia have been recovered from the body cavities of several female
mites taken from detritus cavities. However, the well-developed capitular groove of O. attaphilus
suggests a liquid rather than a solid diet, although a mixed diet of fungi and nest microfauna
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AsAsAsAA cocococooospspspspspporororororeeess ooooff
OpOpOpOpOpOpOpOpphihihihihihihh ososoosostototootoomamamamaama nnnnnnovovovovovovo o-o-o-o-oo ulluluu mimiiiimimmmmiim

Ascospores of
Ophiostoma novo-ulmi

Proctolaelaps scolyti

Figure 7
Ascospores of Ophiostoma novo-ulmi (Dutch elm disease) on the dorsal surface of the mite Proctolaelaps scolyti
phoretic on Scolytus spp. bark beetles. Photo by J.C. Moser.

Deutonymph:
nonfeeding stage of
mites; stage that molts
into the adult form

is a possibility. The presence of a weakly defined bidentate tooth on the female cheliceral digit
suggests that phoresy could play a role in mite colonization of new nests, as a bidentate tooth is
often correlated with a phoretic lifestyle in macrochelid mites (80).

O. attaphilus is one of 17 mite species found along with eight nonacarine inquilines in nests
of the ant species Atta texana (Buckley) in Louisiana. Recorded nest habitats for these species
include galleries, fungus gardens, and detritus cavities (99). Individual fungus gardens in A. texana
nests flourish for only a month, after which they senesce and are removed to detritus cavities
by ant workers. Some arthropod species are routinely found in fungus gardens or galleries, but
O. attaphilus has been collected exclusively from detritus cavities. These cavities are difficult to
pinpoint in nest excavations because a bulldozer or a backhoe is often the principal excavating
tool, as A. texana nests may exceed a depth of 12 feet (99). Only three of the nests excavated in
Louisiana since 1959 contained specimens of O. attaphilus, all of which were collected from detritus
cavities. O. attaphilus has been successfully maintained in laboratory colonies for long periods on
nest detritus taken from the field, though limited reproduction has been observed (99).

The mite Histiostoma bakeri Hughes & Jackson has been found in many habitats, including
the nests of A. texana (59) and nests of termites such as Coptotermes formosanus (116). Wirth &
Moser (148) noted that H. bakeri develops in A. texana detritus, which contains many species of
fungi, but not in the fungus gardens. Both major and minor workers of this ant may be covered by
deutonymphs of H. bakeri. Large numbers of the mite covering the ventral head and legs of ants
disturb locomotion and orientation of those ants. Conspicuous rubbing of the hindlegs on the sides
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of the body did not remove the mites, but the mites were removed by the grooming behavior of
minor workers. Most mite deutonymphs survived this cleaning procedure, and afterward climbed
onto other ants. Ants with only a few deutonymphs did not elicit grooming by minor workers.
The role of this mite in the ant nest is unknown, but Histiostoma mites are microbial feeders and
could prevent bacterial infections. Workers of both Atta sexdens and A. vollenweideri (Forel) have
been observed to carry H. bakeri (148).

Of the 29 species of mites in nests of the red imported fire ant (Solenopsis invicta Buren) (100), at
least 11 mite species belonging to the families Pygmephoridae, Microdispidae, Neopygmephori-
dae, Scutacaridae, Tarsonemidae, and possibly the Uropodidae may feed on fungi within nests
(28, 33, 38, 70). The spores of fungi that live inside S. invicta nests are potentially carried by
these mites (100). Histiostoma blomquisti Wirth and Moser prefer female ant dealates and alates of
S. invicta (132). Wirth & Moser (149) also noted that S. invicta nest queens are literally covered
by deutonymphs of H. blomquisti, and that workers of S. invicta remove nest queens and alates that
have many deutonymphs of H. blomquisti. There were significantly more deutonymphs, which is
the phoretic stage, on nest queens than on alates. A few deutonymphs, tritonymphs, and females of
H. blomquisti were found in the nest soil samples (149). However, these mites were not successfully
reared on detritus or cadavers in the laboratory. Histiostoma spp. consume microorganisms (such
as fungi and bacteria) associated with insect wounds (83, 147).

The many species of microorganisms phoretic on these mites may also be essential to the nest
community and possibly affect the vigor of both the ants and the mites (100). Ascospores of an
unidentified fungus were observed to propagate within females of the mites Imperipes louisianae
and Gaeolaelaps invictianus Walter & Moser phoretic on S. invicta.

Mite-Fungus Associations with Bees

Understanding phoretic mites is important for the management of bees because of the mites’
impact on bee ecology (95). Mites associated with bees are well studied (reviewed in 31, 125) due
to their potential negative effects on honeybees (Apis mellifera) (27) and other bee systems. For
example, Varroa mite infestation is an important vector of viruses of A. mellifera, causing mortality
and colony collapse (61, 128). Bee colonies with Varroa mites also appear to have an increased
incidence of chalkbrood disease caused by the fungus Ascosphaera apis (90). Spores of Aspergillus
spp. (the cause of stonebrood disease) have also been found on Varroa mites (90). Imparipes mite
species found in bee and sphecid wasp nests carry Fusarium and Mortierella fungal spores in a
sporotheca and Aspergillus on their integuments. These fungal spores grow to provide essential
food for the mites, particularly when a nest is newly colonized (34, 37). By transporting their own
fungus, the mites maintain their independence in their environment, which allows them to change
hosts across a spectrum of soil- and wood-dwelling bees and sphecids (35).

The nature of some mite-fungus interactions within bee nests are context dependent and blur
the line between antagonistic and mutualistic. The mites Trochometridium tribulatum Cross and
Imparipes apicola (Banks) feed on the eggs and larvae of solitary bees. However, after the bee eggs
or larvae die, the mites feed on fungal mycelia growing on the carcasses (28, 30). When these mites
feed on fungal mycelium within bee cells, fungal growth may decrease, benefitting the remaining
bees (39). Biani et al. (14) tested the cleaning effect of Laelaspoides mites in nests of tropical
Megalopta bees and found that there was a significant correlation between the presence of mites
and the absence of fungi inside the brood cells, as well as between the absence of mites and increased
bee mortality. Other mites, such as Parapygmephorus costaricanus Rack and Eickwort, Dinogamasus,
and Proctotydeus therapeutikos, all of which live within bee nests, may feed on and reduce fungal
presence (57, 118). Some bees possess pouch-like structures called acarinaria that allow phoretic
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movement by mites (113, 114). Phoretic histiostomatid mites are associated with the acarinarium
(90) and are observed to feed on microorganisms harmful to bees (112). The mite Trochometridium
tribulatum, found in the nests of ground-nesting bees, disperses via phoresy on bees from nesting
aggregations. The phoretic mites carry fungal spores in a sporotheca, and upon entering a new
host bee cell, a mite kills the egg and inoculates the egg with fungal spores. Mite offspring then
develop on the fungi, later leaving as adults through the soil to seek new bee hosts (29, 88).

Mite-Fungus Associations with Other Insects

The previous case studies represent the best-documented cases of the roles of mites in insect-
fungus relationships. There are many systems in which mites influence insect-fungus relations but
they are not as well understood or as intensely studied. Some of these examples include the effects
of mites associated with termite-microbe interactions (e.g., 107); fly dung communities (e.g., 134);
moth-pollinator relationships (63); and beetle systems such as passalid beetles in rotting wood (86),
weevils in palms (4), beetle pollinators on Protea plants (123), and staphylinids and tenebrionids in
mushrooms (111). Oribatid mites are common fungus feeders in soil ecosystems, are important in
nutrient cycling and decomposition (110), and act as vectors for carrying and transmitting molds
associated with plant roots and food crops on their bodies or in their digestive tracts (1). These
oribatid mites either walk or use insects as phoretic hosts to travel among and between habitats (e.g.,
46). Further study is needed to determine the effects of mites on many other insect-fungus systems.

EFFECTS OF MITES ON THE GENETIC DIVERSITY
OF FUNGAL PARTNERS

Mites frequently carry within their sporothecae ascospores, which are the products of sexual
recombination (19, 20, 98, 103, 104). For instance, Tarsonemus mites associated with D. frontalis
carry the ascospores of O. minus and C. ranaculosus (19, 52, 98, 104). C. ranaculosus is one of
the mutualistic mycangial fungi of D. frontalis, which transmits it vertically from beetle parent
to offspring. Interestingly, this transmission method directly propagates particular fungal strains,
resulting in continued introduction of the same strain from tree to tree, across beetle generations.
The nonrandom selection of fungal strains by the beetle acts like purifying selection on the fungal
populations, reducing genetic diversity (130). Mites, on the other hand, feed on the reproductive
structures of C. ranaculosus and transmit ascospores. Thus, in this case, mites promote greater
genetic diversity of the beetle-mutualistic fungi.

The transmission of ascospores by mites likely occurs with other bark beetle–associated fungi
such as O. minus, which is associated with D. frontalis, and O. montium (Rumbold) von Arx, which is
associated with the mountain pine beetle (Dendroctonus ponderosae) (96). Owing to mite preference
for particular fungi, the two mycangial fungi associated with D. frontalis and D. ponderosae likely
experience different dispersal patterns and degrees of genetic variability as a result of mite and
beetle dispersal patterns. Roe et al. (122) further support this hypothesis by detecting evidence
for recombination in O. montium, whereas evidence of recombination in the other mycangial
fungal species was weak. Fungal species that produce ascospores transmitted by mites have higher
genotypic diversity than asexually reproducing fungal species, and are expected to have higher
numbers of unique, recombinant genotypes (12). Thus, mites increase the ability of fungi to
transmit new genetic combinations, allowing rapid adaptation to changing conditions such as
transitions to new host trees or changing climate. Further research is needed to explore how mites
influence patterns and rates of recombination of fungi associated with insects and how this affects
the stability and evolution of insect-fungus mutualisms.
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MITES AS TRANSPORTERS OF FUNGAL PATHOGENS OF INSECTS

There are over 700 species of entomopathogenic fungi (120) and mites transmit some of these
pathogens to insects (117, 126). Entomopathogenic fungi such as Beauveria, Entomophthorales,
Hirsutella, and Nosema species are common pathogens of mites (139) and insects (47), but whether
they are transferred to insects by mites is not known in many cases. Hirsutella fungi were frequently
isolated from mites associated with bark beetles under the bark of spruce (Picea), pine (Pinus), fir
(Abies) and oak (Quercus) trees (138), and H. nodulosa fungus transmitted from tarsonemid mites
infected several bark beetle larvae (11). Beauveria bassiana, a well-known entomopathogenic fungus,
has been isolated from the mites Tyrophagus, Rhizoglyphus, and Histiostoma associated with onion
(Allium cepa) plants (1). Other soil-dwelling mites potentially vector B. bassiana (119). The role
that mites play in fungal epidemiology is unclear, and more research is needed to broaden our
understanding of the transfer and spread of entomopathogenic fungi among insects and mites.

MITES AS TRANSPORTERS OF FUNGAL PATHOGENS OF PLANTS

Many mite families in different suborders interact with plant pathogenic fungi (42). Mites can
facilitate fungal infection by vectoring pathogen spores or by creating wound sites in plants for
fungal penetration (2, 51). Many close associations between mites and fungal plant pathogens (42,
81, 89) significantly affect plant, fruit, or flower production and survival (e.g., Fusarium glume spot
on wheat in South Africa; 68). How mites affect the insect-fungus relations that influence plants is
less clear. Many cases of introduced fungus–insect systems have become invasive by shifting from
dead or dying trees to living trees, threatening tree crops such as avocado (Persea), walnut (Juglans),
mango (Mangifera), pine (Pinus), and other nursery trees (60). Hulcr & Dunn (60) propose that the
shift is the result of an evolutionary mismatch between fungi and host trees. We propose that the
increased tree mortality or shift from dead to living trees could also be a consequence of a change
in mite behavior or of novel associations by mites. There is some evidence that the presence of
mites exacerbates and increases the virulence of fungi associated with herbivorous insects (e.g., elm
trees, Ophiostoma novo-ulmi, mites, and bark beetles; Figure 5) (102, 103). Mites can vector fungal
spores and enhance disease severity in elm trees (19, 94, 102). Mites also improve short-range
dispersal by moving the spores within the plant, thereby increasing the number of infection sites
(e.g., 91). An additional factor causing tree mortality in some systems is that many mites (and their
insect hosts) vector more than one fungal species or strain, and these strains regularly differ in
their ecological roles (50). Increases in abundance and diversity of fungal associates can lead to
greater tree mortality (60).

APPROACHES FOR STUDYING MITE-FUNGUS-INSECT
COMMUNITIES

Most studies of mite-fungus-insect interactions have considered them binary interactions; indeed,
binary interactions are simpler to understand and are a necessary step toward understanding
the full range of interspecific interactions in a community context. A holistic approach should
consider these interactions (which can range from mutualism to commensalism to antagonism
within a symbiont pairing) across the extent of the mite, fungus, and insect life cycles (76). There
is still a great need to determine the mite and fungal compositions of many insect systems. The
use of genetic methods will be extremely important for accurately identifying mite species. After
identifying the species present within a community, the next challenge is to identify the effects of
these species on the community.
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Understanding these interactions is important for building predictive models that provide a
deeper understanding of ecological community principles and dynamics from both applied and
theoretical standpoints. Much of the baseline research needed to generate such models depends
on determining which species are present in a community, what their functions are, and how
they interact with one another. There is also a need for improved statistical approaches and
tools for analyzing community structures, comparing across communities, and estimating the
relative impacts of species through space and time within communities. Advances in molecular
biology and computational biology are resulting in better predictive ecological models that are
poised to enhance biological control in multipartite communities (60). Increased research in these
systems, by using new approaches and exploring a broader range of questions, has shown the
importance of associations with mites, fungi, and insects (25, 122). Bringing together molecular
and ecological approaches will yield new insights. Complexities uncovered by better techniques
and increased interest in this field will only show the need for interdisciplinary, collaborative, and
holistic approaches (26, 76).

CONCLUSIONS

Many mite species feed and transport fungi, and use insects to access resources and for dispersal.
These multitripartite associations range from mutualistic to antagonistic. Many of these mites are
mycetophagous, feeding on the fungi associated with insects. Mycetophagous mites can affect the
evolution and ecology of fungi and thus affect insect-fungus associations and insect population
dynamics. Many mites remain undescribed or, if they are described, have unknown life histories.
In addition, the nature of many insect associations with fungi, whether antagonistic or mutualistic,
remains poorly understood. The role that mites play in many ecosystems is often overlooked or
ignored, although there are insect systems, such as bark beetles, bees, and ants, in which mites
have been long studied and their roles in the community well documented. Mites have important
effects on community dynamics, ecosystem processes, and biodiversity within many insect-fungus
systems. Given that mites are understudied but highly abundant, it is likely that they have bigger,
more important, and widespread impacts on communities than we currently realize.

SUMMARY POINTS

1. Mites are a driving force of diversification and stability in insect-fungus associations,
and they have important effects on community dynamics, ecosystem processes, and
biodiversity.

2. Many mites are phoretic on insects and can transmit insect and plant pathogens. We
propose that recent increases in tree mortality or shifts by insect pests from dead to
living trees could be a consequence of a change in mite behavior or of novel associations
by mites.

3. Mites promote greater genetic diversity of fungi associated with insects and plants and
can influence the frequency of recombination, allowing for greater adaptation to new
hosts, environments, and changing climate.

4. There is still a great need to determine the mite and fungal compositions of many insect
systems. The use of genetic methods to identify mites will be extremely important for
accurately identifying mite species. Mites are underdescribed and many species are yet
to be discovered.
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5. Phoresy is a principal adaptation that mites require to associate closely with insects.
Reliable transport of mites on insects requires mites to possess the mechanical and sensory
capabilities to identify, find, and attach to insect hosts. Mites synchronize phoretic life
stages to match those of their insect hosts.

6. Among the best-understood cases of mite-fungus-insect interactions are systems of bark
beetles, leafcutter ants, bees, and wasps.

7. The role of mites in many ecosystems is often overlooked or ignored, although there are
systems such as those described here in which mites have been long studied and their
roles in microbial ecology well documented.
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