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Abstract: Earlywood and latewood microfibril angle (MFA) was determined at I-millimeter intervals from 
disks at 1.4 meters, then at 3-meter intervals to a height of 13.7 meters, from 18 loblolly pine (Pinus taeda L.) 
trees grown in southeastern Texas. A modified three-parameter logistic function with mixed effects is used for 
modeling earlywood and latewood MFA. By making the parameters of the logistic function linear functions of 
height, a three-dimensional model was developed that describes the changes of earlywood and latewood MFA 
within the tree. A first-order autoregressive correlation structure and a variance model corresponding to a 
variance covariate given by the fitted values for each wood type, but in which the proportionality constant differs 
according to the level of wood type. was identified as the within-group correlation and variance structures. 
Cross-validation was used to determine model accuracy and precision. The methods of model development 
including determination of the height structure, which parameters should be considered random or fixed, 
determination of an appropriate variance-covariance structure, and prediction are addressed. Model performance 
was evaluated utilizing informative statistics including likelihood ratio tests (LRTs), Akaike information 
criterion (AIC), and Bayesian information criterion (BIC). FOR. SCI. 5 1 (4):357-371. 
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L OBLOLLY PINE (PINUS TAEDA L.) is the most impor- 
tant commercial species in the southern United 
States. The southeastern states produce 58 and 16% 

of all the marketed timber in the United States and the 
world, respectively (Wear and Greis 2002). Loblolly pine is 
used extensively for use in the manufacture of lumber and 
composite wood products, and is the primary species of the 
US pulp and paper industry (Daniels et al. 2002). Microfi- 
bril angle (MFA) is known to be one of the main determi- 
nants of the mechanical properties of wood. MFA is defined 
by Lichtenegger et al. (1999) as the angle between the 
cellulose fibrils and the longitudinal cell axis. MFA is 
highly correlated with specific gravity, modulus of elastic- 
ity, modulus of rupture, and the longitudinal and tangential 
shrinkage of wood. MFA has a significant effect on both the 
mechanical behavior and dimensional stability of wood, and 
as such is an important quality characteristic for sawn 
timber (MacDonald and Hubert 2002). In addition, MFA 
has been correlated with differences in paper properties 
such as stretch, stiffness, and strength (Watson and Dad- 
swell 1964, Kellogg et al. 1975, Megraw 1985). Because of 
these relationships, MFA has become an important indicator 
of wood quality to the forest products industry. 

Variations in MFA of any tree species can be attributed 
to variation within a tree, between trees in a particular stand, 
between different growing sites, and between different sil- 

vicultural regimes (Addis et al. 1995). MFA varies within 
each growth ring, from pith to bark, with height in the stem 
and among trees. Cave and Walker (1994) reported that the 
MFA decreases from the first earlywood cell to the last 
latewood cell. MFA in loblolly pine is large near the pith 
and decreases rapidly out to 10 or more rings from the pith, 
and then continues dropping, regardless of height, but at a 
much slower rate until such time as it essentially stabilizes. 
The decrease in MFA with age takes place at a slower rate 
near the base of the tree than it does in the upper region. 
This results in higher MFA values for a given number of 
rings from the pith at the butt and breast height regions than 
at several meters in height and above (Megraw 1985). 
Megraw et al. (1999) found that the average MFA values of 
24 loblolly pine trees decreases with increasing ring number 
all the way out through ring 20 at the base, 1 meter, and 2 
meters in height. At heights of 3 meters and above, MFA 
was found to decrease to ring 10, where it essentially 
stabilized near 10" for all rings thereafter. 

MFA varies considerably within the juvenile and mature 
zones of tree wood. MFA is characteristically greater in 
juvenile wood than mature wood. In juvenile wood MFA is 
large, ranging from 25" to 35" and often up to 50" near the 
pith, while MFA in mature wood is small, ranging from 5O 
to 10" (Larson et al. 2001). Pillow et al. (1 953) found that 
MFA in the juvenile wood of open-grown loblolly pine 
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averaged 20" larger than that of closely spaced natural 
stands. MFA has been found to decrease from 33" at ring 1 
to 23" by age 10, and 17" at age 22, in fast-grown loblolly 
pine (Ying et al. 1994). 

Nonlinear mixed-effects models (NLMEs) are important 
tools for statistical modeling with forestry applications. 
Recently, Fang and Bailey (2001) used NLMEs for model- 
ing dominant height growth curves of slash pine (Pinus 
elliottii Engelm.) under varying silvicultural scenarios. Hall 
and Clutter (2004) describe techniques for development of 
multivariate multilevel NLMEs for prediction of dominant 
height, basal area, trees per hectare, and volume. Daniels et 
al. (2002) used a three-parameter logistic function for mod- 
eling specific gravity of loblolly pine at any ring from pith 
and height. 

Forestry-related data are typically collected from perma- 
nent plots over time, e.g., height, basal area, volume, and 
trees per hectare. The assumption of independence of re- 
peated measures in forestry is often violated by the repeated 
sampling of permanent plots, or in our case individual trees 
(Clutter 1961, Bailey and Clutter 1974, Lappi and Bailey 
1988, Gregoire et al. 1995). Data of this structure accom- 
modate analysis using mixed-effects modeling techniques. 
NLMEs allow for the inclusion of multiple sources of 
correlation and/or heterogeneity, and account for treatment 
or covariate effects with fixed-effects parameters (Hall and 
Clutter 2004). 

In this article we use repeated measures at the individual 
tree and disk level for development of multilevel nonlinear 
mixed-effects models for modeling earlywood and latewood 
MFA in three-dimensional space. We also present the meth- 
ods of model development including determination of the 
height structure, determination of random and fixed param- 
eters, determination of an appropriate variance-covariance 
structure, and prediction. 

Study Materials 
Eighteen trees representing six stands were selected from 

southeastern Texas for MFA analysis. The stands were 
located on land owned by forest products companies, and 
included only stands with similar silvicultural history: (1) 
site preparation with no herbaceous weed control, (2) no 
fertilization at planting except phosphorus on phosphorus- 
deficient sites, and (3) stand density of at least 617 trees per 
hectare at the time of sampling. Trees larger than 12.7 
centimeters in diameter were inventoried on three 
0.04-hectare plots to determine stand density and diameter 
distribution. A sample of three trees proportional to the 
diameter distribution of each stand to represent a range of 
tree sizes in the stand was chosen for MFA analysis. Stand 
attributes are summarized in Table 1. 

Cross-sectional disks 2.54 centimeters thick were cut at 
1.4 meters, and then at 3-meter intervals to a height of 13.7 
meters. A radial strip 1.27 centimeters square in cross-sec- 
tion, extending from pith to bark, was cut from each disk, 
dried, glued to core holders, and sawn into two strips at the 
pith. The strip used for MFA analysis was dried at 122°C 

Table 1. Range and average tree size (in parenthesis) characteristics 
for IS loblolly pine trees sampled for earlywood and latewood MFA 
analysis in Southeast Texas. 

-- 

Total Earlywood Latewood 
DBH Height Age MFA MFA 
(cm) (m) (years) (degrees) (degrees) 

14.2-29.0 11.4-21.7 21-24 8.2-39.8 8.1-33.7 , 

(20.0) (17.2) (22) ( 17.9) (15.1) 

and analyzed by Silviscan using X-ray diffraction at 
1 -millimeter intervals on the radial surface. A densitometer 
was used to determine specific gravity. The densitometer 
was calibrated to express specific gravity on an air-dried 
basis and a specific gravity value of 0.53 was used to 
separate earlywood and latewood. Traditionally, a specific 
gravity value of 0.48 is used to distinguish between early- 
wood and latewood specific gravity (Clark et al. 2004) 
based on green volume and dry weight. However, specific 
gravity values analyzed by Silviscan are based on dry vol- 
ume and dry weight resulting in a reduction of volume on 
the order of lo%, thus resulting in higher specific gravity 
values. Separation of earlywood rings from latewood rings 
was accomplished using Silviscan' s Analyse200 1 program. 
A plot of mean annual ring MFA by wood type and disk 
height is presented in Figure I .  It can be seen that the both 
earlywood and latewood follow the same general pattern. At 
all heights, MFA is large near the pith and decreases rapidly 
until it eventually stabilizes. Figure 1 also indicates that 
MFA is larger in earlywood than Iatewood at all height 
levels. 

Model Development 
A modified three-parameter logistic function serves as 

the basic MFA model. The model can be expressed as 

f (Ring) = 
Po 

1 + e"lKi"g + P2' 

where Ring is ring number from pith,f(Ring) is the mean 

I I I I 1 

5 10 15 20 2s 

Ring number 

Figure 1. Plot of mean microfibril angle by wood type and height 
level (m). 
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response function of MFA, Po corresponds to an initial 
value parameter, 6, is the rate parameter, and p2 is the 
lower asymptote. If PI  is positive, as Ring -+ x,flRing) -+ 
p2. TO represent MFA in three-dimensional space, height 
must be added as a covariate. In this case, the parameters Po, 
P I ,  and p, were allowed to vary with height. That is, the 
parameters are to be taken as functions of height. By allow- 
ing the parameters in Equation 1 to be both fixed and 
random effects, the obtained random effects estimates can 
be plotted by height, indicating an appropriate function, i.e., 
linear, quadratic, or some higher-ordered polynomial 
function. 

Using the notation of Pinheiro and Bates (2000), let yuk 
equal the response at the kth measurement on the jth sec- 
ond-level group of the ith first-level group. This can be 
expressed as 

where M is the number of first-level groups (trees), Mi is the 
number of second-level groups within the ith first-level 
group (disks within a tree), ng is the number of observations 
on the jth second-level group of the ith first-level group, and 
qik is a normally distributed within-group error term. Here, 
f is a real-valued, differentiable function of vector-valued 
mixed-effects parameters pv, and a vector of covariates vQ,. 
The mixed-effects parameters Pii, take the form 

where b, and bU are the first- and second-level random 
effects vectors of size q ,  X 1 and q, x 1,  respectively. Bu,, , 
and Buk., are the associated random effects design matrices, 
respectively. The fixed effects design matrix and parameter 

vectors are AM and /3, respectively. We assume bi - 
N(0, q,), b, - N(0, V,). No constraints other than assum- 
ing they are positive-definite symmetric matrices are put on 
V ,  and V,. It may be useful to restrict and 9, to special 
forms of variance-covariance matrices for stability and 
computing speed. By assuming the random effects are in- 
dependent of each other, it would make 9, and *,) diag- 
onal matrices. Hall and Clutter (2004) state that often there 
is no a priori reason for assuming the random effects pa- 
rameters are uncorrelated, and that random effects pertain- 
ing to distinct response variables measured on the same unit 
will typically be correlated The models in this article were 
fit using the NLME library in S-Plus. 

Specification of the Height Structure 
For development of an appropriate height structure, in- 

dependent random effects were assumed implying a diago- 
nal random effects variance-covariance matrix with zero 
off-diagonal covariance elements. After determination of 
the height structure, the assumption of independent random 
effects will be relaxed, and a correlated variance-covari- 
ance structure will be applied to account for potential cor- 
relation among the random effects. All models fit in this 
study used the natural logarithm of disk height. Taking the 
natural logarithm of disk height rescales the slope of the 
height structure, paying dividends in computational time 
and model stability. Plots of the random effects estimates by 
parameter versus the natural logarithm of height are given in 
Figure 2. From the plot, it appears that j3, is linearly 
correlated with the natural logarithm of height, PI is qua- 
dratic, and p, possibly linearly correlated with the natural 
logarithm of height. The fitting comparison of differing 
height structures (Table 2) indicates that the assumptions 

0.5 1.0 1.5 2.0 2.5 

Heighl ln(m) 

Figure 2. Plot of estimated random effects versus the natural logarithm of height (m). 



made above are plausible (model 3). Because the models are 
nested, a likelihood ratio test (LRT) can be used to deter- 
mine which model contains the appropriate height function. 
LRTs show that the model where all parameters are qua- 
dratic functions of height (model 1) can be reduced to a 
more parsimonious model. Table 2 also indicates that a 
height term is needed in the P2 parameter (model 5). 

From Table 2, model 3 will be used to represent three- 
dimensional earlywood and latewood MFA based on LRT, 
log-likelihood, AIC and BIC criteria, and parsimony. Be- 
cause the basic model structure has been specified, it may 

effects by wood type, but these covariates may still be 
included in the model by adding indicator variables. Updat- 
ing model 4 from Table 3, the new model, call it model 4.1, 
takes the form 

pi, = (i;) = (e;) + (?) + (in.) 
now be appropriate to relax the assumption of independence 
among the random effects estimates. We first update model 
3 by fitting a general positive-definite variance-covariance (Po0 + Pollx + bo, + bob) + (I302 + Bod.Jln(ht) 
structure. We also test whether the second-level random 

= 

(PI" + Pl,Iv + bli + blij) + (812 + P~dJln(ht)  

effects (disks within tree) can be eliminated from the model + (PI4 + fi~I~){ln(ht)}~ 
using LRTs. Table 3 indicates that a correlated variance- ( P ~ o  + + b2i + b2ij) + (&2 + &3L)ln(ht) 

covariance structure is needed in the model. The LRT 
comparing the diagonal and symmetric variance-covari- 
ance structures was found to be almost significant at the 
0.001 level. Furthermore, the LRT statistic confirms the 
significance of the second-level random effects (disks 
within tree). 

Adding Earlywood and Latewood Covariates 
into the Model 

We are now interested in determining which covariates 
in the data are potentially useful in explaining random 
effects variation. In this case, we are interested in explaining 
the relationship/variation of earlywood and latewood MFA. 
High correlation of the random effects may be an indicator 
that similar patterns exist among the design components, 
which may be explained by some other covariates (Fang and 
Bailey 2001). A plot of the random effects shows the 
correlations among the three random effects parameters are 
high (Figure 3), indicating a covariate model for the mixed 
effects may be helpful in explaining variation. One way for 
determining the relationship between the mixed effects and 
the covariates (earlywood and latewood) is to plot the 
random effects estimates against these covariates. However, 
the measurements of earlywood and latewood are dependent 
because they were taken from the same ring within the same 
disk. This restricts us in plotting the estimated random 

if wood type = Latewood 
= { if otherwise. 

The addition of the covariates in the model may change 
the variance-covariance correlation of the estimated ran- 
dom effects at both the tree and disk levels. This suggests 
that some of the random effects may be dropped, or the 
variance-covariance structure could be simplified by as- 
suming some block diagonal structure. Updating model 4.1, 
call it model 4.2, we allow 

boi 0 0 
a r b )  = a = I = (0 $11 2 ) .  

0 3121 +22 

and 

In q ,  (the tree level), we removed the b,,, random effects 
parameter, which was found to be significantly smaller than 
the b,, and bZi random effects estimates, and assume an 
unstructured structure between the b,, and bZi parameters. 
At the disk level, we assume b,,j. is independent of bOij and 

Table 2. Informative statistical criterion for development of an appropriate height structure by allowing the base parameters to be linear (L) or 
quadratic (Q) functions of height. 

Parameter 

Model No. of parameters* Po P ,  P 2  AIC BIC ~ o g l i  kehoodt LRT* P-value 

* The number of parameters includes both the parameters in the mean function (three), variance-covariance parameters (six), a deviance parameter a, and 
the appropriate height parameters. 

Maximum likelihood method was applied in parameter estimation. 
* Likelihood ratio is calculated with respect to the current model and the immediately preceding model. 
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Table 3. Comparisons of mixed effects model performance with different variance-covariance structures (Diag = Diagonal, Sym = General 
positive-definite). 

No. of Var-Cov Log- 
Model ~arameters Structure AIC BIC 1 ikehood LRT* P-value 

* Likelihood ratio is calculated with respect to the current model and the immediately preceding model 

Figure 3. Scatterplot of the estimated random effects from model 4. 

b,,, due to low correlation, but allow correlation between class represents a variance model with different variances 
boo and bZq. for each level of stratification, s, that can be represented as 

Var(~,) = d6:, g(s, 6) = Determining the Within-Groups Error (6 )  

structure The varPower structure is given as 
The Variance Function 

Var(eijk) = ~'lv~kj'', g(uijk, 6) = Ivijklb, Once the covariates have been determined in the model, (7) 

we proceed the variance-c0variance structure which, expanded to account for the levels of early- and 
of the within-group errors to account for heteroskedasticity latewood s, becomes 
and autocorrelation. We use a conditional error variance 
(Davidian and Giltinan 1995, Pinheiro and Bates 2000), Var(eijk) = dlvijk12"jL, g(vijk. s, 6) = luukl"'jL, (8) 
where we assume 

where are the variance parameters for each stratum, s. 
Var(&ijklbi., bij) = dg2(pijk, vijk, a), ( 5 )  Finally, the varCornb operator allows for combining two or 

where pil~ = dy@lbi.,, bijJ, vjjk is a vector of variance more variance functions. Using these variance structures, 
covariates, 6 is a vector of variance parameters, and g(*) is we found a varComb variance model corresponding to a 
the variance function. The NLME library in S-Plus allows variance covariate given by the fitted values by s, but in 
for a wide variety of variance functions (Pinheiro and Bates which the proportionality constant differs according to the 
2000). Some of the variance structures used include the level of s, as a product of the varPower and varIdent 
varIdent, varPower, and varComb functions. The varIdent functions best described these data. The final form of this 
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Table 4. Comparisons of mixed effects model performance with the addition of covariates (Model 4.1), reduced variance-covariance structure 
(Model 4.2) and within-groups error structure (Model 43). 

Model No. of parameters AIC B IC Log-likehood LRT* P-value 

4 20 8526 8636 -4242.9 
4.1 27 7477 7626 -37 1 I .5 1062.7 0.000 1 
4.2 22 7472 7593 -3714.1 5.2 0.3923 
4.3 25 7288 7425 -3619.1 190.0 0.000 1 

* Likelihood ratio is calculated with respect lo the current model and the immediately preceding model. 

model's (model 4.2) variance structure is given as structure. The empirical autocorrelation at lag I as defined 
by Pinheiro and Bates (2000) is 

Var(e,,) = d l v G k ~ 2 6 ' s ~ ~ . . ~ = d g ~ ( u u k ,  S, 81)g:(~, S2). (9) 
M Mi no- I 

From Table 4, we can see that the addition of the earlywood 
and latewood covariates (model 4.1) significantly improve 

Z C B r c r u o + i l / ~ ( ~ )  
i-I j - I  k - l  f i  = 

M Mi "i, on model 4. The LRT statistic comparing the full variance- (10) 

covariance structure (model 4.1) to the reduced block diag- X X 1 r :k /~~o)  ' 
i -1  j - I  k - l  

onal structure (model 4.2) was found to be 5.2, with a 
P-value of 0.39. Comparing models with nested random where N(1) is the number of residual pairs used in the 
effects structures via LRTs seems reasonable. However, the summation defining the numerator of b(l), and rqk is the 
usual X2 reference distribution is no longer appropriate, standardized residuals in the mixed-effects model. An ap- 
falling under the general theory of Wilks' theorem, and proximated two-sided critical value for the empirical auto- 
results in an overestimated p-value (Pinheir0 and Bates correlation ij(1) at significance level a can be calculated as 
2000). The P-value from this comparison is relatively high, Z(I-rJ21 \IN(I), where Z(, -a, is the standard normal quantile 
and the log-likelihood values are very similar, indicating at 1 - d 2 .  A plot of the estimated autocorrelation coeffi- 
that the reduced variance-covariance structure is preferred. cients against lags with critical value boundary lines at the 
The inclusion of an appropriate within-groups error struc- 0.05 level for model 4.3 is given in Figure 4. At lag 1, the 
ture (model 4.3) was found to significantly increase the empirical correlation coefficient is positive, indicating that 
log-likelihood value, and decrease the AIC and BIC values. two adjacent MFA disk measurements are similar to a 
The LRT value of the proposed error structure with that of certain extent. The empirical correlation coefficients at all 
the spherical error structure (model 4.2) was found to be other lags are negative, which is against intuition. This 
190, with a P-value of 0.0001, indicating a better fit. counterintuitive autocorrelation is not uncommon and is 

symptomatic of the complexity of within-errors autocorre- 
lation (Davidian and Giltinan 1995, Fang and Bailey 2001). 

Serial Correlation Structure A host of correlation structures are available to account 
Correlation structures are used for modeling dependence for the within-tree autocorrelation. The simplest is a com- 

among observations. In the context of mixed effects models, pound symmetry model, which assumes equal correlation 
they are used to model the correlation among the within-sub- among all measurements within the same tree. However, a 
ject errors. Correlation structures can be categorized as time compound symmetric structure may be too simplistic, 
series or spatial correlation structures, and the latter can be 
considered a generalization of the former. The time series 
correlation structure is most suitable for equally spaced time 1.0 - 
series data or equally spaced distance data. If we use vector p,, 
to denote the position vector of within-subject error ciik and 0.8 - 
model the within-subject correlation of c,, and ~6 as a func- 
tion of relative distance between p,, and p ~ , > ~ ,  then the corre- 0.6 - 
lation of the errors can be defined as corr(ciik, c6) = 3 
Ad@*, piix'), PI, where p are correlation parameters and h(*) is 

o,4 - 
a specified correlation function. Times series correlation struc- $ 
tures may only work if the pS, are integer scalars, but a spatial 

0.2 - correlation structure has no such restrictions. For our data, we 
have approximately equally spaced MFA measurements taken 
at 3-meter intervals along the tree stem, so a time series 0.0 

correlation structure may be used to approximate MFA auto- 
correlation within a tree. 

.............................................. ............................................ 

.................................................................................... 

I I I I I I 

0 1 2 3 4 5 
For sample data, we can use an empirical autocorrelation Lap 

function (BOX et al. 1994) to estimate the serial correlation. Figure 4. Scatterplot of autoeomlation ver sus lag from 
and gain insight into choosing an appropriate correlation mdeI4.3. 
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because we expect that correlation decreases with an in- 
crease of absolute disk distance. Another general class of 
correlation structures is the autoregressive-moving average 
model, also known as ARMA models (Box et al. 1994). 
This family of correlation structures is a mixture of an 
autoregressive model and a moving average model. 

An autoregressive model, AR(*), defines the current 
within-subject error as a linear function of the previous 
within-subject errors plus a homoskedastic noise term with 
expected value 0. This can be written as 

The number of past residual errors in the model, p, is called 
the order of the autoregressive model. When p equals 1, 
Equation 11 reduces to an AR(1) correlation structure. 

The moving average correlation model, MA(*), assumes 
the current within-subject error is a linear function of the 
last several independent and identical distributed within- 
subject errors plus a noise term, and is defined as 

As in the autoregressive model, q in Equation 12 is called 
the order of the moving average model. 

The ARMA@, q) model is a mixture of a p-order autore- 
gressive and q-order moving average models, with p + 9 
parameters, and is given as 

Figure 5. Scatterplot of empirical autocorrelation ver sus lag from 
model 4.3.1 with an AR(1) correlation structure. 

Figure 5 is a graph of the empirical autocorrelation coeffi- 
cients versus lags for the transformed within-subject errors. 
The transformed within-subject errors appear to be uncor- 
related noise with negligible empirical autocorrelation co- 
efficient, except at lags 4 and 5, at which the estimated 
autocorrelation coefficients are greater than their critical 
values. This may be due to a small sample size or unreli- 

P cl ability of empirical autocorrelation calculation at high lags. 
81 = C 41~1-I + C 6jo,-,at. 

i -  l J -  1 
(I3) The AR(1) correlation structure sufficiently accounts for 

dependency among repeated MFA measurements from the 
Differing correlation structures were fit to model 4.3 (Table same tree. The coefficient of the AR(1) correlation structure 
5), and we used LRTs, AIC, and BIC criteria for determin- from model 4.3.1 was found to be 0.3373, and the autocor- 
ing the best correlation structure for the within-subject relation function is 
errors. It can be seen that the added correlation structures 
greatly improve on model 4.3. AIC, BIC, and log-likelihood 
values all confirm that an AR(1) model (model 4.3.1) is the 
best correlation structure. Model 4.3.1 has the lowest AIC 
and BIC values and the fewest parameters. Further analysis 
utilizing LRTs comparing model 4.3.1 versus the other 
correlation structures indicated no significant difference in 
the models, reassuring that $he parsimonious AR(1) model 
should be selected. The estimated empirical correlation co- 
efficients for Model 4.3.1 were found to be 

b = [b(l) ,  b(2L b(3L b(4), b(5)IT 

= [-0.0482, -0.0054, -0.0394, -0.0591 1, -0.6956IT. 

Accounting for the correlation of the within-groups er- 
rors may also change the variance-covariance correlation of 
the estimated random effects. On closer inspection of model 
4.3.1, it was decided that the variance-covariance structure 
of fPl could be simplified by assuming an independent 
block diagonal matrix due to the low correlation between 
the b , ,  and b,, parameters. Attempts were also made to 
simplify the variance-covariance matrices of both Vl and 
q2 by dropping the least-significant random effects param- 
eters. However, doing this resulted in a significant reduction 
in log-likelihood and an increase in AIC and BIC values. 

Table 5. Comparisons of mixed effects model performance with different within-groups correlation structures. 

Model Correlation structure No. of parameters AIC BIC Log-likehood LRT* P-value 

4.3 Independent 
4.30.1 AR( 1) 
4.30.2 MA( 1 )  
4.30.5 
4.30.6 A w l  
4.30.3 ARMA(1 ,I) 
4.30.4 ARMA( I .2) 

* Likelihood ratio is calculated with respect to Model 4.3. 
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LRT values indicated that the only appropriate simplifica- 
tion was by specifying the block diagonal structure in !PI, 
which can be specified as 

An LRT indicated that the reparameterization of from 
model 4.3.1 was justified. The P-value of the LRT was 
found to be 0.4767, and the new model has parameters, 
AIC, BIC, and log-likelihood values of 25, 7,147, 7,285, 
and - 3,548.8, respectively. 

Interpretation of Model Parameters 
With the variance-covariance matrices, within-group er- 

rors, and autocorrelation functions specified, it is now pos- 
sible to reduce the full model in Equation 4 by removing 
insignificant fixed-effects parameters. The P,, parameter 
was found to be the only highly insignificant fixed-effects 
parameter in the model, and was subsequently dropped and 
the model refitted. Fit index values for the model were 
found to be 0.8 1,0.86, and 0.92 at the population, tree, and 
disk levels, respectively. Diagnosis of the final model can 
also be accomplished by inspection of a plot of the residuals 
versus fitted values (Figure 6). Smoothing techniques are 
useful to evaluate the possible bias across fitted values. The 
kernel smoother used is 

where b is the bandwidth parameter and K is a kernel 
function. The critical parameter is the bandwidth parameter 
b, which determines computing time and the degree of detail 
derived from the smoothing application. A bandwidth of 1 
was chosen, and the kernel function is a standard normal 
distribution. Figure 6 does not indicate any general trends or 
patterns. and overall the standardized residuals are small, 
suggesting that the final model was successful in explaining 
the variation of MFA. 

It is possible to obtain population or "typical" prediction 
values of earlywood and latewood MFA by setting the 
random effects estimates to 0, and substituting correspond- 
ing fixed-effects values into Equation 4. Parameter esti- 
mates and corresponding standard errors and P-values for 
the fixed effects of the reduced model are given in Table 6. 
We constructed a plot of the population, or "typical" MFA 
for earlywood and latewood at heights of 1.4,4.6,7.6, 10.7, 
and 13.7 meters (Figure 7). Initial values at all heights were 
found to be greater for earlywood than latewood. Similarly. 
the lower asymptotic bounds reached at each height level 
were found to be greater in earlywood than latewood. 

From Table 6, one can evaluate the fixed-effects model 
parameters at differing height values. At a height of 1 meter, 
which sets the value of height in the model to 0, the initial 
value, rate, and lower asymptote parameters for earlywood 
and latewood, respectively, were found to be 49.91 14 and 
46.4387, 0.0649 and 0.0357, and 9.1290. The initial values 
of earlywood will always be larger at any height than those 
of latewood. The initial rate of change of MFA was found 
to be higher in earlywood. However, because the rate pa- 
rameter changes with disk height, it was found that, at a 

Fitted Values 

Figure 6. Plot of standardized residuals versus fitted values with a loess smoother for the reduced 
modified logistic microfibril ang le model with random effects and AR(1) within-groups autocor- 
relation and power variance function proportional to stratification. 

364 Forest Scierlce 51(4) 2005 



Table 6. The estimated parameters for population prediction of earlywood and latewood microfibril angle (random effects input as 0) with the 
modified Logistic function. 

Parameter Estimate Std. Error P-value 

Ring number 

Figure 7. A comparison of the mean responses (typical responses) of microfibril angle by wood 
type and height level (m). 

height of - 1.13 meters, the rate of change of earlywood and 
latewood MFA is roughly equivalent. Above 1.13 meters, 
latewood MFA decreases faster than earl ywood until a 
height of -14.66 meters, where the rate of change of 
earlywood and latewood are roughly equivalent. Above 
14.66 meters, earlywood MFA decreases at a faster rate than 
latewood MFA. It should be noted that 14.66 meters is well 
outside the natural range of the data, and caution should be 
used in interpretation. The asymptotic bounds for early- 
wood and latewood are the same at a height of 1 meter, 
however the bounds become larger with increasing disk 
height, and earlywood MFA will always have a larger 
asymptotic bound than latewood. Even though it has been 
shown that population predictions from the final model 
accurately describe the trends of earlywood and latewood 
MFA, inclusion of the random effects estimates will allow 
for more precise prediction. As a comparison, we graphed 
the predictive curves with and without random effects for a 
single tree in the original data set. From this, i t  can be seen 

that more precise predictions are obtained with the inclusion 
of the estimated random effects in the model (Figure 8). 

Cross- Validation and Model Diagnosis 
The model diagnosis techniques described above rely 

strictly on residual values from the fitted data. This ap- 
proach has an inherent limitation, given that the same data 
were used both for fitting and model diagnosis. The main 
application of our model is earlywood and latewood MFA 
prediction for trees not in our fitting data set. The use of 
data-splitting or cross-validation has been shown not to 
provide any additional model information compared to the 
statistics obtained from models fit to the entire data set 
(Kozak and Kozak 2003). Models validated with an inde- 
pendent data set prove that either the data are from the same 
population and will perform as per se validation using 
data-splitting or the data are from a different population 
entirely, in which case the models should be refit to obtain 
more appropriate parameter estimates. However, cross- 
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Subject specified Typical responses " Observed 
5 10 15 

Ring number 

Figure 8. A comparison of individual microfibril angle predictions by typical response and 
subject-specified response with the final reduced nonlinear mixed-effects microfibril angle model. 

validation is a useful tool for evaluating the stability and 
functional form of the models presented above and will be 
used here to verify the intrinsic flexibility of the models. 
Because of the independence between the fitting data and 
the validation data sets, the degree of accuracy of MFA 
predictions from the validation data set to the true observed 
values is a good indication of model performance. To pre- 
serve the original hierarchical data structure, the fitting data 
set was constructed by first randomly selecting 14 of the 18 
sampled trees along with their corresponding variables of 

Graphical analysis and smoothing techniques were con- 
ducted to evaluate model bias at differing ring numbers and 
heights. The scatterplot of residuals versus ring number will 
reveal possible bias at different ring numbers. In the same 
vein, the scatterplot of residuals versus relative height can 
be used to assess bias in the longitudinal direction. Scatter- 
plots of the residuals versus ring number and the natural log 
of disk height with their corresponding smoothing lines are 
found in Figures 10 and 1 1. The points are almost symmet- 
ric around zero on the scatterplot of residuals versus ring 

interest, leaving 4 trees to be used for model validation. number, and its smoothing line almost overlaps the x axis. 
Cross-validation model diagnosis can be used to assess However, there does appear to be a mild quadratic trend. 

overall model bias, bias at different heights, bias at different Thus, the model is overall unbiased across ring number. In 
ring numbers from the pith, and the overall variation of the the plot of residuals versus the natural log of disk height, 
residuals. Residuals are calculated as the differences be- there appears to be extreme bias at larger disk heights, 
tween the observed and predicted MFA values. Fit statistics indicating that the model is underestimating the true MFA. 
from the validation data set are presented in Table 7. Fit 
index values at the population level were found to be 0.81 for N~~ observations 
across earlywood and latewood, 0.78 for earlywood, and 
0.8 1 for latewood, respectively. The mean residial values at MFA prediction is a major application of this model. 
all levels were found to be positive, indicating that the Accurate MFA predictions can improve wood quality pre- 
model is underestimating MFA. Figure 9 validates that the diction and utilization. The nonlinear mixed effects model 
model is yielding relatively accurate ring MFA prediction, allows for the prediction of MFA from trees that may or 
and overall prediction is unbiased because the mean bias is may not have prior measured observations. 
small. The majority of the standardized residuals versus 
fitted values are centered on zero, with no obvious patterns. 

Table 7. Fit statistics from cross-validation including fit index (FI), 
mean residual (MRS), absolute mean residual (AMRS), and root mean 
square error of prediction (RMSEP) at the population level across 
strata (Early/Late) and by strata (Earlywood, Latewood). 

Level 
Fit Statistic Early/Late Earlywood Latewood 

FI 0.81 0.78 0.8 1 
MRS 0.25 0.14 0.37 
AMRS 1.98 2.17 1.79 
RMSEP 2.49 2.74 2.23 

Case I :  Prediction Is Required for a New Tree 
with No Prior Observations 

If no prior information is available for an individual tree, 
it is impossible to determine the random effects for the tree. 
The only choice is to use the random effects expected 
values, which are zero by definition. The model simply 
reduces to the population level model and we can predict 
MFA at the kth ring from pith at the jth height level as 
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- I ate- - 

Fitted Values 

Figure 9. Plot of standardized residual versus fitted values with a loess smoother for cross-validation 
of the reduced modified logis tic microfibril angle model with random effects and AR(1) within- 
groups autocor relation and power variance function proportional to stratification. 

Ring number 

Figure 10. Plot of residuals versus ring number with a loess smoother for cross-validation of the 
reduced modified logistic microfib ril angle model with random effects and AR(1) within-groups 
autocorrelation and power variance function proportional to stratification. 
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Figure 11. Plot of residuals versus the natural log o f disk height with a loess smoother for 
cross-validation of the reduced modifie d logistic microfibril angle model with random effects 
and AR(1) within-groups autocorrelation and power variance function proportional to stratifi- 
cation. 

where error term, and 6 is a 13 X 13 covariance matrix of the 
estimated parameter vector p, 

6 j k  = (60jk b l j k  62,k)' = AjkBT, 

8' 

= (boo 8 0 ,  A2 b03 Bio  611 b 1 2  8 1 3  b 1 4  61, a 2 0  b 2 2  b2,)', 

i 
With the above formulas, one can estimate ring MFA, the 

1 I, In(htjk) ln(htjk)l, 0 0 0 prediction variance, and corresponding confidence inter- 
= 0 0 0 0 1 Ir In(hfjk) 

0 0  0 
vals. An approximate 100(1 - a) confidence interval for 

0 0 0  0 this prediction is given as 

0 0 0 0 0 
In(htj,)l., ln{(htjk)12 1n{(ht,,)I2l, 0 0 MFA,, +. t(n - p - q + 1, 1 - d 2 )  \var(MFAjk), 

O O O 1 In(htjk) In(htjk)I, 
where n is the total number of observations, p is the total 

0 0 0 1 0 0  number of fixed effects parameters, and q is the number of 
the jth level random effects. As an example, consider esti- 
mating earlywood MFA at ring number 3 from pith at a 
height of 1.37 meters aboveground. The predicted value is 

Taking the first-order Of MFA at P = P ,  we can 28-24 with variance of 15.70 and corresponding confidence 
obtain the prediction variance, intervals of [20.47, 36.011 at the a = 0.05 level. 

= F ~ ( ~ , , ) ( A , . ~ u . ~  + B,!~~B: + B,@?B;) Case 2: Prediction for a New Tree with 
Incremental Core Measurements 

~~,k(b,k) + a2i,k, ( 16) 
Oftentimes, accurate MFA estimates are required not for 

where 9, is a 3 X 3 tovariance matrix for the tree level a single tree, but for a plot, stand, or plantation. In this case, 
random effects, V!, is a 3 X 3 covariance matrix for the disk the population level prediction may be inadequate. One 
level random effects, fijk is scalar for the variance of the alternative is to draw several incremental cores at various 
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heights from a sample of trees and determine the ring-by- 
ring earlywood and latewood MFA of the incremental cores. 
These ring values can then be used to obtain an estimate of 
the tree random effects, which can then be averaged to 
estimate the mean random effects response in the stand, 
potentially improving prediction. 

Suppose j incremental cores are selected from i trees in 
a plantation for earlywood and latewood MFA analysis. The 
number of rings of the jth incremental core from the ith tree 
is Mi. Let y,,, equal the response at the measurement of the 
kth ring from pith on the jth increment core of the ith tree. 
This can be expressed as 

whe re i=  1 , . . . ,  M , j = l ,  . . . ,  M , k =  1 , . . . , n o .  
Population level MFA predictions are given as 

with Dl,, and B2!, defined similarly to case 1 MFA 
prediction. 

We can estimate the random effects of tree i as 

where yijk is the response vector of the ith tree and ji is the 
corresponding population level prediction, 

af(ringjjk. In(Htij,),pjj) 
Zijk,2 = 

"ij 
B2 7 

8, is an no X n, within-disk variance-covariance matrix of 
the jth disk from the ith tree, and all other variables previ- 
ously defined. 

The value of MFA of tree i, at height j, and ring k, is 
given as 

Variance for prediction at the kth ring on the jth increment 
core of the ith tree is 

Poij 
MFA,, = 

I + exp(bl, + gIi) 
+ hij + h i ,  (2 1 

where, 

var(y,k - jijk) = ~;k(bij)fi(bok)~,k(bjk) 
A A A  

+ iE&,242&jk.2 + z;k.Ivizijk.I 

where, 

and all other variables previously defined. 
As an example, if one were to take an incremental core 

at 1.37 meters aboveground that has 16 rings, with corre- 
sponding earlywood MFA measurements of y = (32.71, 
28.70, . . . , 14.1 31T. From Equations 19, the tree level 
random effects estimators are 6, = (0, -0.0032, -0.0655)~. 
Applying Equations 21 and 22 yields an earlywood MFA 
prediction of 27.70, variance of 1 1.69, and confidence in- 
tervals of [20.99, 34.401 at the a = 0.05 level. We can see 
that the case 2 prediction has a smaller variance, thus higher 
precision. 

Discussion and Conclusions 

Mixed effects models are useful tools for analyzing re- 
peated measures data. Their inherent flexibility allows for 
development of a unique variance-covariance structure, 
which is limiting in traditional nonlinear regression. A vari- 
ant of the logistic function is used to characterize these 
patterns. Ring number from pith and the natural logarithm 
of disk height were found to be good predictor variables and 
were incorporated into the model. The incorporation of the 
disk height predictor variables into the model was accom- 
plished by making the parameters of the logistic function 
linear functions of height. The analysis results show that a 
mixed-effects model provides more accurate predictions 
and an overall better fit. 

A random-effects model may alleviate the problems of 
nonconstant variance and autocorrelation among the re- 
peated measurements. The final model has two levels of 
mixed effects with random effects at the tree and disk levels. 
Autocorrelation was accounted for in this model by assum- 
ing that the disk error term was from an AR(1) process. 
Heteroskedasticity was accounted for with a variance model 
corresponding to a variance covariate given by the fitted 
values for each wood type, but in which the proportionality 
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constant differs according to the level of wood type, was 
identified as the within-group variance structure. 

The mixed-effects model was found to be underestimat- 
ing the true value of MFA at the population level, and by 
wood type. Overall, the model was found to be unbiased 
across ring number, with a mild quadratic trend observed in 
the plot of residuals versus the natural logarithm of disk 
height. It should be noted that, of the 18 trees used in this 
analysis, only 7 trees were tall enough to have disks re- 
moved at 13.7 meters. From these 7 trees there were a total 
of 118 ring observations, for an average number of 8.4 
earlywood and latewood rings per tree. The bias of the 
model at upper heights may possibly be overcome by fitting 
to a more complete data set, properly calibrating the model. 

The population level MFA model is suitable for predic- 
tion of earlywood and latewood MFA for a population of 
trees. One way to attain better MFA predictions is to esti- 
mate random effects by determining ring-by-ring MFA val- 
ues from incremental cores taken from several sample trees. 
These estimated random effects will allow better prediction 
precision. This approach can be useful for predicting MFA 
values of a unique stand or plantation. Several trees from 
such a stand can be selected and felled for MFA analysis. 
Each of these trees will yield unique tree and disk level 
random effects estimates, and the mean of these random 
effects can be used to adjust the MFA prediction for that 
stand or plantation. 

The random effects estimates were found to be larger at 
the second level or disks within a tree level, thus accounting 
for more variation. This means that the MFA values from 
tree to tree are relatively consistent, but the disks within a 
tree exhibit more variation, due to the unique patterns of 
MFA corresponding to height level. MFA should be more 
similar in trees sampled from within the same stand. We 
attempted to incorporate between-tree spatial correlation 
into these models by adding a stand level effect. However, 
the addition of this random effect did not significantly 
improve model performance. This may appear counterintui- 
tive to logic, but it may be the case that environmental 
impacts have negligible influence on MFA compared to the 
genetic makeup, size, and position the tree holds within the 
stand, i.e., dominant, co-dominant, or suppressed. 

It should be recognized that the data used in this study 
were collected from trees in stands with similar site indices, 
growing conditions, ages, and size characteristics from 
within a narrow geographic range, severely restricting the 
use of the model. Thus, caution should be used when 
extrapolating beyond the natural range of the data on which 
the model is based. However, the models presented in this 
article provide prototypes from which data collected in 
other regions, or for a larger more inclusive data set, could 
be based. 
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